These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 39127918)

  • 1. Repurposing a Catalytic Cycle for Transient Self-Assembly.
    Amano S; Hermans TM
    J Am Chem Soc; 2024 Aug; 146(33):23289-23296. PubMed ID: 39127918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical engines: driving systems away from equilibrium through catalyst reaction cycles.
    Amano S; Borsley S; Leigh DA; Sun Z
    Nat Nanotechnol; 2021 Oct; 16(10):1057-1067. PubMed ID: 34625723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Devising Synthetic Reaction Cycles for Dissipative Nonequilibrium Self-Assembly.
    Singh N; Formon GJM; De Piccoli S; Hermans TM
    Adv Mater; 2020 May; 32(20):e1906834. PubMed ID: 32064688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical-Fuel-Driven Assembly in Macromolecular Science: Recent Advances and Challenges.
    Leng Z; Peng F; Hao X
    Chempluschem; 2020 Jun; 85(6):1190-1199. PubMed ID: 32584522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy consumption in chemical fuel-driven self-assembly.
    Ragazzon G; Prins LJ
    Nat Nanotechnol; 2018 Oct; 13(10):882-889. PubMed ID: 30224796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fuel-Mediated Transient Clustering of Colloidal Building Blocks.
    van Ravensteijn BGP; Hendriksen WE; Eelkema R; van Esch JH; Kegel WK
    J Am Chem Soc; 2017 Jul; 139(29):9763-9766. PubMed ID: 28671466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissipative Systems Driven by the Decarboxylation of Activated Carboxylic Acids.
    Del Giudice D; Di Stefano S
    Acc Chem Res; 2023 Apr; 56(7):889-899. PubMed ID: 36916734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Fuel-Driven Molecular Switches and Machines.
    Benny R; Sahoo D; George A; De S
    ChemistryOpen; 2022 Sep; 11(9):e202200128. PubMed ID: 36071446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards Active Self-Assembly Through DNA Nanotechnology.
    Dong J; Zhou C; Wang Q
    Top Curr Chem (Cham); 2020 Mar; 378(2):33. PubMed ID: 32162028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient Self-assembly Processes Operated by Gaseous Fuels under Out-of-Equilibrium Conditions.
    Mukhopadhyay RD; Choi S; Sen SK; Hwang IC; Kim K
    Chem Asian J; 2020 Dec; 15(23):4118-4123. PubMed ID: 33135872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Transient Covalent Bond in Abiotic Nonequilibrium Systems.
    Kariyawasam LS; Hossain MM; Hartley CS
    Angew Chem Int Ed Engl; 2021 Jun; 60(23):12648-12658. PubMed ID: 33264456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fuel-Driven Dissipative Self-Assembly of a Supra-Amphiphile in Batch Reactor.
    Wang G; Sun J; An L; Liu S
    Biomacromolecules; 2018 Jul; 19(7):2542-2548. PubMed ID: 29712421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissipative Assembly of Macrocycles Comprising Multiple Transient Bonds.
    Hossain MM; Atkinson JL; Hartley CS
    Angew Chem Int Ed Engl; 2020 Aug; 59(33):13807-13813. PubMed ID: 32384209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Out-of-Equilibrium Colloidal Assembly Driven by Chemical Reaction Networks.
    van Ravensteijn BGP; Voets IK; Kegel WK; Eelkema R
    Langmuir; 2020 Sep; 36(36):10639-10656. PubMed ID: 32787015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoinitiated Transient Self-Assembly in a Catalytically Driven Chemical Reaction Cycle.
    Valera JS; López-Acosta Á; Hermans TM
    Angew Chem Int Ed Engl; 2024 Aug; 63(33):e202406931. PubMed ID: 38770670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Minderoo-Monaco Commission on Plastics and Human Health.
    Landrigan PJ; Raps H; Cropper M; Bald C; Brunner M; Canonizado EM; Charles D; Chiles TC; Donohue MJ; Enck J; Fenichel P; Fleming LE; Ferrier-Pages C; Fordham R; Gozt A; Griffin C; Hahn ME; Haryanto B; Hixson R; Ianelli H; James BD; Kumar P; Laborde A; Law KL; Martin K; Mu J; Mulders Y; Mustapha A; Niu J; Pahl S; Park Y; Pedrotti ML; Pitt JA; Ruchirawat M; Seewoo BJ; Spring M; Stegeman JJ; Suk W; Symeonides C; Takada H; Thompson RC; Vicini A; Wang Z; Whitman E; Wirth D; Wolff M; Yousuf AK; Dunlop S
    Ann Glob Health; 2023; 89(1):23. PubMed ID: 36969097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissipative Self-Assembly of Photoluminescent Silicon Nanocrystals.
    Grötsch RK; Angı A; Mideksa YG; Wanzke C; Tena-Solsona M; Feige MJ; Rieger B; Boekhoven J
    Angew Chem Int Ed Engl; 2018 Oct; 57(44):14608-14612. PubMed ID: 30040877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemically Fueled Supramolecular Materials.
    Chen X; Würbser MA; Boekhoven J
    Acc Mater Res; 2023 May; 4(5):416-426. PubMed ID: 37256081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical fuels for molecular machinery.
    Borsley S; Leigh DA; Roberts BMW
    Nat Chem; 2022 Jul; 14(7):728-738. PubMed ID: 35778564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissipative Self-Assembly Driven by the Consumption of Chemical Fuels.
    De S; Klajn R
    Adv Mater; 2018 Oct; 30(41):e1706750. PubMed ID: 29520846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.