These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 39128038)
21. Auditory cortical evoked potentials in tinnitus patients with normal audiological presentation. Lee CY; Jaw FS; Pan SL; Lin MY; Young YH J Formos Med Assoc; 2007 Dec; 106(12):979-85. PubMed ID: 18194902 [TBL] [Abstract][Full Text] [Related]
22. Cortical auditory evoked potential (CAEP) and behavioural measures of auditory function in a child with a single-sided deafness. Cañete OM; Purdy SC; Neeff M; Brown CRS; Thorne PR Cochlear Implants Int; 2017 Nov; 18(6):335-346. PubMed ID: 28922984 [TBL] [Abstract][Full Text] [Related]
23. The gap-prepulse inhibition deficit of the cortical N1-P2 complex in patients with tinnitus: The effect of gap duration. Ku Y; Ahn JW; Kwon C; Kim DY; Suh MW; Park MK; Lee JH; Oh SH; Kim HC Hear Res; 2017 May; 348():120-128. PubMed ID: 28286100 [TBL] [Abstract][Full Text] [Related]
24. Cortical auditory evoked responses of older adults with and without probable mild cognitive impairment. Lister JJ; Harrison Bush AL; Andel R; Matthews C; Morgan D; Edwards JD Clin Neurophysiol; 2016 Feb; 127(2):1279-1287. PubMed ID: 26643153 [TBL] [Abstract][Full Text] [Related]
25. A cross-linguistic examination of cortical auditory evoked potentials for a categorical voicing contrast. Elangovan S; Stuart A Neurosci Lett; 2011 Feb; 490(2):140-4. PubMed ID: 21193015 [TBL] [Abstract][Full Text] [Related]
26. Towards an objectification by classification of tinnitus. Norena A; Cransac H; Chéry-Croze S Clin Neurophysiol; 1999 Apr; 110(4):666-75. PubMed ID: 10378736 [TBL] [Abstract][Full Text] [Related]
27. Cortical Auditory Evoked Potentials Recorded From Nucleus Hybrid Cochlear Implant Users. Brown CJ; Jeon EK; Chiou LK; Kirby B; Karsten SA; Turner CW; Abbas PJ Ear Hear; 2015; 36(6):723-32. PubMed ID: 26295607 [TBL] [Abstract][Full Text] [Related]
28. Auditory steady-state responses to bone conduction stimuli in children with hearing loss. Swanepoel de W; Ebrahim S; Friedland P; Swanepoel A; Pottas L Int J Pediatr Otorhinolaryngol; 2008 Dec; 72(12):1861-71. PubMed ID: 18963045 [TBL] [Abstract][Full Text] [Related]
29. Late auditory evoked potentials in elderly long-term hearing-aid users with unilateral or bilateral fittings. Bertoli S; Probst R; Bodmer D Hear Res; 2011 Oct; 280(1-2):58-69. PubMed ID: 21569828 [TBL] [Abstract][Full Text] [Related]
30. Electrophysiological changes in auditory evoked potentials in rats with salicylate-induced tinnitus. Castañeda R; Natarajan S; Jeong SY; Hong BN; Kang TH Brain Res; 2019 Jul; 1715():235-244. PubMed ID: 30958992 [TBL] [Abstract][Full Text] [Related]
31. Monitoring auditory cortical plasticity in hearing aid users with long latency auditory evoked potentials: a longitudinal study. Leite RA; Magliaro FCL; Raimundo JC; Bento RF; Matas CG Clinics (Sao Paulo); 2018 Feb; 73():e51. PubMed ID: 29466495 [TBL] [Abstract][Full Text] [Related]
32. Air conduction, bone conduction, and soft tissue conduction audiograms in normal hearing and simulated hearing losses. Adelman C; Cohen A; Regev-Cohen A; Chordekar S; Fraenkel R; Sohmer H J Am Acad Audiol; 2015 Jan; 26(1):101-8. PubMed ID: 25597465 [TBL] [Abstract][Full Text] [Related]
33. Cortical potentials evoked by tone frequency changes can predict speech perception in noise. Vonck BMD; van Heteren JAA; Lammers MJW; de Jel DVC; Schaake WAA; van Zanten GA; Stokroos RJ; Versnel H Hear Res; 2022 Jul; 420():108508. PubMed ID: 35477512 [TBL] [Abstract][Full Text] [Related]
34. Exploring the Effect of Silence on Auditory Network Regions in Young Female Adults who Experience Temporary Tinnitus on Exposure to Silence. Onyinyechi U Int Tinnitus J; 2022 Dec; 26(2):79-88. PubMed ID: 36724353 [TBL] [Abstract][Full Text] [Related]
35. Age-related differences in sensitivity to small changes in frequency assessed with cortical evoked potentials. Harris KC; Mills JH; He NJ; Dubno JR Hear Res; 2008 Sep; 243(1-2):47-56. PubMed ID: 18597958 [TBL] [Abstract][Full Text] [Related]
36. N1-p2 recordings to gaps in broadband noise. Palmer SB; Musiek FE J Am Acad Audiol; 2013 Jan; 24(1):37-45. PubMed ID: 23231815 [TBL] [Abstract][Full Text] [Related]
37. Cortical auditory evoked potentials and hemispheric specialization of speech in individuals with learning disability and healthy controls: A preliminary study. Bhat M; Palaniswamy HP; Pichaimuthu AN; Thomas N F1000Res; 2018; 7():1939. PubMed ID: 31001413 [No Abstract] [Full Text] [Related]
38. Altered cortical activity in prelingually deafened cochlear implant users following long periods of auditory deprivation. Lammers MJ; Versnel H; van Zanten GA; Grolman W J Assoc Res Otolaryngol; 2015 Feb; 16(1):159-70. PubMed ID: 25315357 [TBL] [Abstract][Full Text] [Related]
39. Age-related differences in auditory spatial processing revealed by acoustic change complex. Wang X; Nie S; Wen Y; Zhao Z; Li J; Wang N; Zhang J Front Hum Neurosci; 2024; 18():1342931. PubMed ID: 38681742 [TBL] [Abstract][Full Text] [Related]
40. High-Resolution fMRI of Auditory Cortical Map Changes in Unilateral Hearing Loss and Tinnitus. Ghazaleh N; Zwaag WV; Clarke S; Ville DV; Maire R; Saenz M Brain Topogr; 2017 Sep; 30(5):685-697. PubMed ID: 28168599 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]