These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 39129401)

  • 1. Investigating and exploiting the impact of variability in resonator parameters on the vibration attenuation in locally resonant metamaterials.
    Van Belle L; Deckers E; Cicirello A
    Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2279):20230364. PubMed ID: 39129401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wave attenuation and trapping in 3D printed cantilever-in-mass metamaterials with spatially correlated variability.
    Beli D; Fabro AT; Ruzzene M; Arruda JRF
    Sci Rep; 2019 Apr; 9(1):5617. PubMed ID: 30948748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband Vibration Attenuation Achieved by 2D Elasto-Acoustic Metamaterial Plates with Rainbow Stepped Resonators.
    Wei W; Chronopoulos D; Meng H
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plate-type elastic metamaterials for low-frequency broadband elastic wave attenuation.
    Li Y; Zhu L; Chen T
    Ultrasonics; 2017 Jan; 73():34-42. PubMed ID: 27597307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sub-wavelength energy trapping of elastic waves in a metamaterial.
    Colombi A; Roux P; Rupin M
    J Acoust Soc Am; 2014 Aug; 136(2):EL192-8. PubMed ID: 25096146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valley Hall Elastic Edge States in Locally Resonant Metamaterials.
    Fang W; Han C; Chen Y; Liu Y
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D rainbow phononic crystals for extended vibration attenuation bands.
    Meng H; Bailey N; Chen Y; Wang L; Ciampa F; Fabro A; Chronopoulos D; Elmadih W
    Sci Rep; 2020 Nov; 10(1):18989. PubMed ID: 33149240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical Shunt Resonators-Based Piezoelectric Metamaterial for Elastic Wave Attenuation.
    Xu J; Lu H; Qin W; Wang P; Bian J
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of 2D Rainbow Metamaterials for Broadband Vibration Attenuation.
    Meng H; Chronopoulos D; Bailey N; Wang L
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33227995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing buckling to design tunable locally resonant acoustic metamaterials.
    Wang P; Casadei F; Shan S; Weaver JC; Bertoldi K
    Phys Rev Lett; 2014 Jul; 113(1):014301. PubMed ID: 25032927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective dynamic band gap tuning in metamaterials using graded photoresponsive resonator arrays.
    Dal Poggetto VF; Urban D; Nistri F; Beoletto PH; Descrovi E; Miniaci M; Pugno NM; Bosia F; Gliozzi AS
    Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2279):20240150. PubMed ID: 39129411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Frequency Bandgaps of the Lightweight Single-Phase Acoustic Metamaterials with Locally Resonant Archimedean Spirals.
    Gao H; Yan Q; Liu X; Zhang Y; Sun Y; Ding Q; Wang L; Xu J; Yan H
    Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active Acoustic Metamaterial Based on Helmholtz Resonators to Absorb Broadband Low-Frequency Noise.
    Hedayati R; Lakshmanan SP
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and experimental validation of a finite-size labyrinthine metamaterial for vibro-acoustics: enabling upscaling towards large-scale structures.
    Hermann S; Billon K; Parlak AM; Orlowsky J; Collet M; Madeo A
    Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2278):20230367. PubMed ID: 39069763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the tunable response of highly strained compliant optical metamaterials.
    Pryce IM; Aydin K; Kelaita YA; Briggs RM; Atwater HA
    Philos Trans A Math Phys Eng Sci; 2011 Sep; 369(1950):3447-55. PubMed ID: 21807720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Power-Based Framework for Quantifying Parameter Uncertainties in Finite Vibroacoustic Metamaterial Plates.
    Atzrodt H; Maniam A; Droste M; Rieß S; Hülsebrock M
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergent subharmonic band gaps in nonlinear locally resonant metamaterials induced by autoparametric resonance.
    Silva PB; Leamy MJ; Geers MGD; Kouznetsova VG
    Phys Rev E; 2019 Jun; 99(6-1):063003. PubMed ID: 31330758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Randomized resonant metamaterials for single-sensor identification of elastic vibrations.
    Jiang T; Li C; He Q; Peng ZK
    Nat Commun; 2020 May; 11(1):2353. PubMed ID: 32393741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pneumatically-Actuated Acoustic Metamaterials Based on Helmholtz Resonators.
    Hedayati R; Lakshmanan S
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32210047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional resonating metamaterials for low-frequency vibration attenuation.
    Elmadih W; Chronopoulos D; Syam WP; Maskery I; Meng H; Leach RK
    Sci Rep; 2019 Aug; 9(1):11503. PubMed ID: 31395897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.