These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 39129401)
1. Investigating and exploiting the impact of variability in resonator parameters on the vibration attenuation in locally resonant metamaterials. Van Belle L; Deckers E; Cicirello A Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2279):20230364. PubMed ID: 39129401 [TBL] [Abstract][Full Text] [Related]
2. Wave attenuation and trapping in 3D printed cantilever-in-mass metamaterials with spatially correlated variability. Beli D; Fabro AT; Ruzzene M; Arruda JRF Sci Rep; 2019 Apr; 9(1):5617. PubMed ID: 30948748 [TBL] [Abstract][Full Text] [Related]
4. Plate-type elastic metamaterials for low-frequency broadband elastic wave attenuation. Li Y; Zhu L; Chen T Ultrasonics; 2017 Jan; 73():34-42. PubMed ID: 27597307 [TBL] [Abstract][Full Text] [Related]
5. Sub-wavelength energy trapping of elastic waves in a metamaterial. Colombi A; Roux P; Rupin M J Acoust Soc Am; 2014 Aug; 136(2):EL192-8. PubMed ID: 25096146 [TBL] [Abstract][Full Text] [Related]
6. Valley Hall Elastic Edge States in Locally Resonant Metamaterials. Fang W; Han C; Chen Y; Liu Y Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208032 [TBL] [Abstract][Full Text] [Related]
7. 3D rainbow phononic crystals for extended vibration attenuation bands. Meng H; Bailey N; Chen Y; Wang L; Ciampa F; Fabro A; Chronopoulos D; Elmadih W Sci Rep; 2020 Nov; 10(1):18989. PubMed ID: 33149240 [TBL] [Abstract][Full Text] [Related]
11. Selective dynamic band gap tuning in metamaterials using graded photoresponsive resonator arrays. Dal Poggetto VF; Urban D; Nistri F; Beoletto PH; Descrovi E; Miniaci M; Pugno NM; Bosia F; Gliozzi AS Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2279):20240150. PubMed ID: 39129411 [TBL] [Abstract][Full Text] [Related]
12. Low-Frequency Bandgaps of the Lightweight Single-Phase Acoustic Metamaterials with Locally Resonant Archimedean Spirals. Gao H; Yan Q; Liu X; Zhang Y; Sun Y; Ding Q; Wang L; Xu J; Yan H Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009519 [TBL] [Abstract][Full Text] [Related]
13. Active Acoustic Metamaterial Based on Helmholtz Resonators to Absorb Broadband Low-Frequency Noise. Hedayati R; Lakshmanan SP Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399212 [TBL] [Abstract][Full Text] [Related]
14. Design and experimental validation of a finite-size labyrinthine metamaterial for vibro-acoustics: enabling upscaling towards large-scale structures. Hermann S; Billon K; Parlak AM; Orlowsky J; Collet M; Madeo A Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2278):20230367. PubMed ID: 39069763 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the tunable response of highly strained compliant optical metamaterials. Pryce IM; Aydin K; Kelaita YA; Briggs RM; Atwater HA Philos Trans A Math Phys Eng Sci; 2011 Sep; 369(1950):3447-55. PubMed ID: 21807720 [TBL] [Abstract][Full Text] [Related]
16. A Power-Based Framework for Quantifying Parameter Uncertainties in Finite Vibroacoustic Metamaterial Plates. Atzrodt H; Maniam A; Droste M; Rieß S; Hülsebrock M Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512412 [TBL] [Abstract][Full Text] [Related]