These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 39129401)

  • 21. Compact Acoustic Rainbow Trapping in a Bioinspired Spiral Array of Graded Locally Resonant Metamaterials.
    Zhao L; Zhou S
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769956
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tailored acoustic metamaterials. Part II. Extremely thick-walled Helmholtz resonator arrays.
    Smith MJA; Abrahams ID
    Proc Math Phys Eng Sci; 2022 Jun; 478(2262):20220125. PubMed ID: 35756874
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances.
    Colombi A; Roux P; Guenneau S; Gueguen P; Craster RV
    Sci Rep; 2016 Jan; 6():19238. PubMed ID: 26750489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental proof of emergent subharmonic attenuation zones in a nonlinear locally resonant metamaterial.
    Zega V; Silva PB; Geers MGD; Kouznetsova VG
    Sci Rep; 2020 Jul; 10(1):12041. PubMed ID: 32694580
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption.
    Matlack KH; Bauhofer A; Krödel S; Palermo A; Daraio C
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):8386-90. PubMed ID: 27410042
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phononic metastructures with ultrawide low frequency three-dimensional bandgaps as broadband low frequency filter.
    Muhammad ; Lim CW
    Sci Rep; 2021 Mar; 11(1):7137. PubMed ID: 33785851
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep-Learning-Based Acoustic Metamaterial Design for Attenuating Structure-Borne Noise in Auditory Frequency Bands.
    Liu TW; Chan CT; Wu RT
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902994
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of effective mass density and modulus for resonant metamaterials.
    Park J; Park B; Kim D; Park J
    J Acoust Soc Am; 2012 Oct; 132(4):2793-9. PubMed ID: 23039545
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Current developments in elastic and acoustic metamaterials science.
    Failla G; Marzani A; Palermo A; Russillo AF; Colquitt D
    Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2279):20240038. PubMed ID: 39129405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Current developments in elastic and acoustic metamaterials science.
    Failla G; Marzani A; Palermo A; Russillo AF; Colquitt D
    Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2278):20230369. PubMed ID: 39069760
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental study on the characteristic of the NS-GT cut quartz crystal resonator oscillating in the sub-resonant frequency.
    Yamagata S; Kawashima H
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1175-82. PubMed ID: 18244311
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water-tank metabarrier for seismic Rayleigh wave attenuation.
    Russillo AF; Arena F; Failla G
    Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2279):20230363. PubMed ID: 39129406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioinspired periodic panels optimized for acoustic insulation.
    Dal Poggetto VF; Pugno NM; Arruda JRF
    Philos Trans A Math Phys Eng Sci; 2022 Nov; 380(2237):20210389. PubMed ID: 36209809
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metamaterials for Acoustic Noise Filtering and Energy Harvesting.
    Mir F; Mandal D; Banerjee S
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177431
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Membrane-type smart metamaterials for multi-modal sound insulation.
    Zhang X; Chen F; Chen Z; Wang G
    J Acoust Soc Am; 2018 Dec; 144(6):3514. PubMed ID: 30599690
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vibration Analysis of Locally Resonant Beams with L-Joint Using an Exact Wave-Based Vibration Approach.
    Lv H; Zhang R; Chen C; Ma H; Huang X; Yu Z
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984156
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hybrid analytical-numerical optimization design methodology of acoustic metamaterials for sound insulation.
    Vazquez Torre JH; Brunskog J; Cutanda Henriquez V; Jung J
    J Acoust Soc Am; 2021 Jun; 149(6):4398. PubMed ID: 34241420
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wave propagation in a duct with a periodic Helmholtz resonators array.
    Wang X; Mak CM
    J Acoust Soc Am; 2012 Feb; 131(2):1172-82. PubMed ID: 22352492
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sound attenuation in ducts using locally resonant periodic aluminum patches.
    Farooqui M; Elnady T; Akl W
    J Acoust Soc Am; 2016 Jun; 139(6):3277. PubMed ID: 27369152
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An efficient multiscale method for subwavelength transient analysis of acoustic metamaterials.
    Liupekevicius R; van Dommelen JAW; Geers MGD; Kouznetsova VG
    Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2279):20230368. PubMed ID: 39129408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.