These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 39129408)

  • 1. An efficient multiscale method for subwavelength transient analysis of acoustic metamaterials.
    Liupekevicius R; van Dommelen JAW; Geers MGD; Kouznetsova VG
    Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2279):20230368. PubMed ID: 39129408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum.
    Sridhar A; Kouznetsova VG; Geers MG
    Comput Mech; 2016; 57():423-435. PubMed ID: 27429501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic metamaterials: From local resonances to broad horizons.
    Ma G; Sheng P
    Sci Adv; 2016 Feb; 2(2):e1501595. PubMed ID: 26933692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Underwater acoustic metamaterials.
    Dong E; Cao P; Zhang J; Zhang S; Fang NX; Zhang Y
    Natl Sci Rev; 2023 Jun; 10(6):nwac246. PubMed ID: 37181091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extreme material parameters accessible by active acoustic metamaterials with Willis coupling.
    Craig SR; Wang B; Su X; Banerjee D; Welch PJ; Yip MC; Hu Y; Shi C
    J Acoust Soc Am; 2022 Mar; 151(3):1722. PubMed ID: 35364942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current developments in elastic and acoustic metamaterials science.
    Failla G; Marzani A; Palermo A; Russillo AF; Colquitt D
    Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2279):20240038. PubMed ID: 39129405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current developments in elastic and acoustic metamaterials science.
    Failla G; Marzani A; Palermo A; Russillo AF; Colquitt D
    Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2278):20230369. PubMed ID: 39069760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials.
    Kaina N; Lemoult F; Fink M; Lerosey G
    Nature; 2015 Sep; 525(7567):77-81. PubMed ID: 26333466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kirigami-based Elastic Metamaterials with Anisotropic Mass Density for Subwavelength Flexural Wave Control.
    Zhu R; Yasuda H; Huang GL; Yang JK
    Sci Rep; 2018 Jan; 8(1):483. PubMed ID: 29323177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An adjustable acoustic metamaterial cell using a magnetic membrane for tunable resonance.
    Gardiner A; Domingo-Roca R; Windmill JFC; Feeney A
    Sci Rep; 2024 Jul; 14(1):15044. PubMed ID: 38951634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetoactive Acoustic Metamaterials.
    Yu K; Fang NX; Huang G; Wang Q
    Adv Mater; 2018 May; 30(21):e1706348. PubMed ID: 29638017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic metamaterials with negative modulus.
    Fang N; Xi D; Xu J; Ambati M; Srituravanich W; Sun C; Zhang X
    Nat Mater; 2006 Jun; 5(6):452-6. PubMed ID: 16648856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of Locally Resonant Acoustic Metamaterials with Specified Band Gaps Using Multi-Material Topology Optimization.
    Chen H; Fu Y; Ling L; Hu Y; Li L
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First evidence of non-locality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model.
    Madeo A; Barbagallo G; d'Agostino MV; Placidi L; Neff P
    Proc Math Phys Eng Sci; 2016 Jun; 472(2190):20160169. PubMed ID: 27436984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure.
    Muhlestein MB; Haberman MR
    Proc Math Phys Eng Sci; 2016 Aug; 472(2192):20160438. PubMed ID: 27616932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time domain characteristics of wave motion in dispersive and anisotropic continuum acoustic metamaterials.
    Wang Z; Zhou X
    J Acoust Soc Am; 2016 Dec; 140(6):4276. PubMed ID: 28039989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wave transmission in quasi-periodic lattices.
    Moscatelli M; Comi C; Marigo JJ
    Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2279):20230351. PubMed ID: 39129403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating and exploiting the impact of variability in resonator parameters on the vibration attenuation in locally resonant metamaterials.
    Van Belle L; Deckers E; Cicirello A
    Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2279):20230364. PubMed ID: 39129401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overall constitutive properties of stratified lattices with alternating chirality.
    Bacigalupo A; Badino P; Diana V; Gambarotta L
    Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2279):20230355. PubMed ID: 39129410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic metamaterials with circular sector cavities and programmable densities.
    Akl W; Elsabbagh A; Baz A
    J Acoust Soc Am; 2012 Oct; 132(4):2857-65. PubMed ID: 23039552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.