These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 39129411)

  • 41. Photo-responsive hydrogel-based re-programmable metamaterials.
    Patel H; Chen J; Hu Y; Erturk A
    Sci Rep; 2022 Jul; 12(1):13033. PubMed ID: 35906233
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Valley Hall Elastic Edge States in Locally Resonant Metamaterials.
    Fang W; Han C; Chen Y; Liu Y
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208032
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design and experimental validation of a finite-size labyrinthine metamaterial for vibro-acoustics: enabling upscaling towards large-scale structures.
    Hermann S; Billon K; Parlak AM; Orlowsky J; Collet M; Madeo A
    Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2278):20230367. PubMed ID: 39069763
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Emergent subharmonic band gaps in nonlinear locally resonant metamaterials induced by autoparametric resonance.
    Silva PB; Leamy MJ; Geers MGD; Kouznetsova VG
    Phys Rev E; 2019 Jun; 99(6-1):063003. PubMed ID: 31330758
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Low-frequency wave-energy amplification in graded two-dimensional resonator arrays.
    Bennetts LG; Peter MA; Craster RV
    Philos Trans A Math Phys Eng Sci; 2019 Oct; 377(2156):20190104. PubMed ID: 31474211
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Three-dimensional resonating metamaterials for low-frequency vibration attenuation.
    Elmadih W; Chronopoulos D; Syam WP; Maskery I; Meng H; Leach RK
    Sci Rep; 2019 Aug; 9(1):11503. PubMed ID: 31395897
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On-chip higher-order topological micromechanical metamaterials.
    Wu Y; Yan M; Lin ZK; Wang HX; Li F; Jiang JH
    Sci Bull (Beijing); 2021 Oct; 66(19):1959-1966. PubMed ID: 36654165
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A diatomic elastic metamaterial for tunable asymmetric wave transmission in multiple frequency bands.
    Li B; Alamri S; Tan KT
    Sci Rep; 2017 Jul; 7(1):6226. PubMed ID: 28740205
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metamaterials for Acoustic Noise Filtering and Energy Harvesting.
    Mir F; Mandal D; Banerjee S
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177431
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sensing based on Fano-type resonance response of all-dielectric metamaterials.
    Semouchkina E; Duan R; Semouchkin G; Pandey R
    Sensors (Basel); 2015 Apr; 15(4):9344-59. PubMed ID: 25905701
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Designing 3D Digital Metamaterial for Elastic Waves: From Elastic Wave Polarizer to Vibration Control.
    Liu H; Zhang Q; Zhang K; Hu G; Duan H
    Adv Sci (Weinh); 2019 Aug; 6(16):1900401. PubMed ID: 31453062
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Uncovering and Experimental Realization of Multimodal 3D Topological Metamaterials for Low-Frequency and Multiband Elastic Wave Control.
    Dorin P; Khan M; Wang KW
    Adv Sci (Weinh); 2023 Oct; 10(30):e2304793. PubMed ID: 37664881
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nonlinear magnetic metamaterials.
    Shadrivov IV; Kozyrev AB; van der Weide DW; Kivshar YS
    Opt Express; 2008 Dec; 16(25):20266-71. PubMed ID: 19065165
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metamaterials beyond electromagnetism.
    Kadic M; Bückmann T; Schittny R; Wegener M
    Rep Prog Phys; 2013 Dec; 76(12):126501. PubMed ID: 24190877
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mirror-symmetric double-negative metamaterial resonator with polarization insensitivity and tunable sandwiched structure for multiband wireless communications.
    Ji Z; Cao W; Gao M; Liu Y; Chu W; Zhang Q
    Heliyon; 2023 Nov; 9(11):e21731. PubMed ID: 37954310
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Wave transmission in quasi-periodic lattices.
    Moscatelli M; Comi C; Marigo JJ
    Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2279):20230351. PubMed ID: 39129403
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spectro-spatial analysis of elastic wave propagation in nonlinear elastic metamaterial systems with damping.
    Liu M; Zhou F
    Chaos; 2022 Nov; 32(11):113124. PubMed ID: 36456308
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Absorption characteristics of large acoustic metasurfaces.
    Schnitzer O; Brandão R
    Philos Trans A Math Phys Eng Sci; 2022 Sep; 380(2231):20210399. PubMed ID: 35858090
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Coherently controlling metamaterials.
    Chakrabarti S; Ramakrishna SA; Wanare H
    Opt Express; 2008 Nov; 16(24):19504-11. PubMed ID: 19030036
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cnoidal wave propagation in an elastic metamaterial.
    Mo C; Singh J; Raney JR; Purohit PK
    Phys Rev E; 2019 Jul; 100(1-1):013001. PubMed ID: 31499870
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.