These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Defect Engineering of Carbon-based Electrocatalysts for Rechargeable Zinc-air Batteries. Dong F; Wu M; Zhang G; Liu X; Rawach D; Tavares AC; Sun S Chem Asian J; 2020 Nov; 15(22):3737-3751. PubMed ID: 32997441 [TBL] [Abstract][Full Text] [Related]
4. Metal-organic framework-derived advanced oxygen electrocatalysts as air-cathodes for Zn-air batteries: recent trends and future perspectives. Kundu A; Kuila T; Murmu NC; Samanta P; Das S Mater Horiz; 2023 Mar; 10(3):745-787. PubMed ID: 36594186 [TBL] [Abstract][Full Text] [Related]
5. Material design and surface chemistry for advanced rechargeable zinc-air batteries. Lee S; Choi J; Kim M; Park J; Park M; Cho J Chem Sci; 2022 Jun; 13(21):6159-6180. PubMed ID: 35733905 [TBL] [Abstract][Full Text] [Related]
6. Carbon-based composites for rechargeable zinc-air batteries: A mini review. Liu Y; Lu J; Xu S; Zhang W; Gao D Front Chem; 2022; 10():1074984. PubMed ID: 36465872 [TBL] [Abstract][Full Text] [Related]
7. Atomically Dispersed Transition Metal-Nitrogen-Carbon Bifunctional Oxygen Electrocatalysts for Zinc-Air Batteries: Recent Advances and Future Perspectives. Dong F; Wu M; Chen Z; Liu X; Zhang G; Qiao J; Sun S Nanomicro Lett; 2021 Dec; 14(1):36. PubMed ID: 34918185 [TBL] [Abstract][Full Text] [Related]
8. Metal-organic framework based bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries: current progress and prospects. Li Y; Cui M; Yin Z; Chen S; Ma T Chem Sci; 2020 Oct; 11(43):11646-11671. PubMed ID: 34094409 [TBL] [Abstract][Full Text] [Related]
9. Bifunctional ligand Co metal-organic framework derived heterostructured Co-based nanocomposites as oxygen electrocatalysts toward rechargeable zinc-air batteries. Xie X; Zhai Z; Cao W; Dong J; Li Y; Hou Q; Du G; Wang J; Tian L; Zhang J; Zhang T; Shang L J Colloid Interface Sci; 2024 Jun; 664():319-328. PubMed ID: 38479268 [TBL] [Abstract][Full Text] [Related]
11. Enhanced oxygen evolution and power density of Co/Zn@NC@MWCNTs for the application of zinc-air batteries. Chen TH; Ni CS; Lai CY; Gull S; Chu YC; Jao WY; Hu CC; Liu SF; Chi CC; Chen TY; Lee JF; Pao CW; Chen JL; Chen HY; Huang JH J Colloid Interface Sci; 2024 Sep; 679(Pt A):119-131. PubMed ID: 39357222 [TBL] [Abstract][Full Text] [Related]
12. Mutual Self-Regulation of d-Electrons of Single Atoms and Adjacent Nanoparticles for Bifunctional Oxygen Electrocatalysis and Rechargeable Zinc-Air Batteries. Chandrasekaran S; Hu R; Yao L; Sui L; Liu Y; Abdelkader A; Li Y; Ren X; Deng L Nanomicro Lett; 2023 Feb; 15(1):48. PubMed ID: 36773092 [TBL] [Abstract][Full Text] [Related]
13. Cobalt Oxide-Based Electrocatalysts with Bifunctionality for High-Performing Rechargeable Zinc-Air Batteries. Saha P; Shaheen Shah S; Ali M; Nasiruzzaman Shaikh M; Aziz MA; Saleh Ahammad AJ Chem Rec; 2024 Jan; 24(1):e202300216. PubMed ID: 37651034 [TBL] [Abstract][Full Text] [Related]
14. Surface Tailoring-Modulated Bifunctional Oxygen Electrocatalysis with CoP for Rechargeable Zn-Air Battery and Water Splitting. Kumar MM; Aparna C; Nayak AK; Waghmare UV; Pradhan D; Raj CR ACS Appl Mater Interfaces; 2024 Jan; 16(3):3542-3551. PubMed ID: 38215005 [TBL] [Abstract][Full Text] [Related]
15. A Review of Rechargeable Zinc-Air Batteries: Recent Progress and Future Perspectives. Nazir G; Rehman A; Lee JH; Kim CH; Gautam J; Heo K; Hussain S; Ikram M; AlObaid AA; Lee SY; Park SJ Nanomicro Lett; 2024 Feb; 16(1):138. PubMed ID: 38421464 [TBL] [Abstract][Full Text] [Related]
16. Designing High-Quality Electrocatalysts Based on CoO:MnO Zamani-Meymian MR; Khanmohammadi Chenab K; Pourzolfaghar H ACS Appl Mater Interfaces; 2022 Dec; 14(50):55594-55607. PubMed ID: 36475585 [TBL] [Abstract][Full Text] [Related]
17. Dealloying-Derived Porous Spinel Oxide for Bifunctional Oxygen Electrocatalysis and Rechargeable Zinc-Air Batteries: Promotion of Activity Via Hereditary Al-Doping. Wang M; Long Y; Zhao H; Zhang W; Wang L; Dong R; Hou H; Wang H; Wang X ChemSusChem; 2022 Nov; 15(21):e202201518. PubMed ID: 36042569 [TBL] [Abstract][Full Text] [Related]
18. Structural Design Strategy and Active Site Regulation of High-Efficient Bifunctional Oxygen Reaction Electrocatalysts for Zn-Air Battery. Liu X; Zhang G; Wang L; Fu H Small; 2021 Dec; 17(48):e2006766. PubMed ID: 34085767 [TBL] [Abstract][Full Text] [Related]
19. Architecting N-doped Carbon Nanotube-Rich Carbon Nanofibers with Biomimetic Vine-Leaf-Whisker Structure as Robust Bifunctional Electrocatalysts for Rechargeable Zn-Air Batteries. Wang M; Chen Z; Song Y; Hu Z; Song H; Dong S; Yuan D Inorg Chem; 2024 Mar; 63(9):4373-4384. PubMed ID: 38376825 [TBL] [Abstract][Full Text] [Related]
20. High quality bifunctional cathode for rechargeable zinc-air batteries using N-doped carbon nanotubes constrained CoFe alloy. Wang M; Liu B; Zhang H; Lu Z; Xie J; Cao Y J Colloid Interface Sci; 2024 May; 661():681-689. PubMed ID: 38320404 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]