These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 39130554)
1. Prediction of Coal Ash Flow Temperature Based on Gray Relational Analysis, Support Vector Regression and Genetic Algorithm. Sun K; Liu Z; An H; Peng B; Zhou L ACS Omega; 2024 Aug; 9(31):33606-33615. PubMed ID: 39130554 [TBL] [Abstract][Full Text] [Related]
2. Correlation between Flow Temperature and Average Molar Ionic Potential of Ash during Gasification of Coal and Phosphorus-Rich Biomass. Zhao C; Wang Q; Men X; Li Y; Zhang L; Bai Y; Song X; Wang J; Yao M; Yu G Molecules; 2023 Nov; 28(23):. PubMed ID: 38067587 [TBL] [Abstract][Full Text] [Related]
3. Elucidating the effect of process parameters on the production of hydrogen-rich syngas by biomass and coal Co-gasification techniques: A multi-criteria modeling approach. Bahadar A; Kanthasamy R; Sait HH; Zwawi M; Algarni M; Ayodele BV; Cheng CK; Wei LJ Chemosphere; 2022 Jan; 287(Pt 1):132052. PubMed ID: 34478965 [TBL] [Abstract][Full Text] [Related]
4. Combustibility analysis of high-carbon fine slags from an entrained flow gasifier. Dai G; Zheng S; Wang X; Bai Y; Dong Y; Du J; Sun X; Tan H J Environ Manage; 2020 Oct; 271():111009. PubMed ID: 32778293 [TBL] [Abstract][Full Text] [Related]
5. Improvement of Time Forecasting Models Using Machine Learning for Future Pandemic Applications Based on COVID-19 Data 2020-2022. K Abdul Hamid AA; Wan Mohamad Nawi WIA; Lola MS; Mustafa WA; Abdul Malik SM; Zakaria S; Aruchunan E; Zainuddin NH; Gobithaasan RU; Abdullah MT Diagnostics (Basel); 2023 Mar; 13(6):. PubMed ID: 36980429 [TBL] [Abstract][Full Text] [Related]
6. Effect of High Calcium and High Iron Coal on Ash Fusion Characteristics of Petroleum Coke during Cogasification. Wang B; Zhao C; Guo C ACS Omega; 2024 Jul; 9(30):33090-33098. PubMed ID: 39100320 [TBL] [Abstract][Full Text] [Related]
7. Investigation of ash fusion characteristics on co-combustion of coal and biomass (straw, sludge, and herb residue) based on experimental and machine learning method. Lei M; Han H; Tian X; Zhang L; Zhang Q Environ Sci Pollut Res Int; 2024 Feb; 31(6):8467-8482. PubMed ID: 38175513 [TBL] [Abstract][Full Text] [Related]
8. Effects of Proximate Analysis on Coal Ash Fusion Temperatures: An Application of Artificial Neural Network. Onifade M; Lawal AI; Bada SO; Shivute AP ACS Omega; 2023 Oct; 8(42):39080-39095. PubMed ID: 37901553 [TBL] [Abstract][Full Text] [Related]
9. Effecting mechanisms of iron-rich sludge on ash fusion characteristics of coal with high ash fusion temperature under reducing atmosphere. Yang Z; Li F; Ma M; Zhao W; Liu X; Wang Y; Li Z; Fang Y Waste Manag; 2024 Feb; 174():328-339. PubMed ID: 38091657 [TBL] [Abstract][Full Text] [Related]
10. Correlation between the Flow Temperature and Mineral Factor for Coal Ashes Based on FactSage Calculation. Xue J; Li F; Zhang M; Wang Z ACS Omega; 2023 Mar; 8(10):9067-9073. PubMed ID: 36936314 [TBL] [Abstract][Full Text] [Related]
11. Effect of Minor Oxide and Residual Carbon on Coal Ash Crystallization Behavior and Slag Properties during Coal Gasification: Critical Literature Review and Thermodynamic Simulation. Listiyowati LN; Santoso I; Sanwani E; Mubarok MZ ACS Omega; 2023 Oct; 8(42):38794-38805. PubMed ID: 37901573 [TBL] [Abstract][Full Text] [Related]
12. Machine learning-aided hydrothermal carbonization of biomass for coal-like hydrochar production: Parameters optimization and experimental verification. Liu Q; Zhang G; Yu J; Kong G; Cao T; Ji G; Zhang X; Han L Bioresour Technol; 2024 Feb; 393():130073. PubMed ID: 37984666 [TBL] [Abstract][Full Text] [Related]
13. Mineralogical Characterization of Gasification Ash with Different Particle Sizes from Lurgi Gasifier in the Coal-to-Synthetic Natural Gas Plant. Niu M; Fu Y; Liu S ACS Omega; 2022 Mar; 7(10):8526-8535. PubMed ID: 35309470 [TBL] [Abstract][Full Text] [Related]
14. Estimation of gross calorific value of coal based on the cubist regression model. Chen J; He Y; Liang Y; Wang W; Duan X Sci Rep; 2024 Oct; 14(1):23176. PubMed ID: 39369086 [TBL] [Abstract][Full Text] [Related]
15. A novel multi-model estimation of phosphorus in coal and its ash using FTIR spectroscopy. Vinod A; Prasad AK; Mishra S; Purkait B; Mukherjee S; Shukla A; Desinayak N; Sarkar BC; Varma AK Sci Rep; 2024 Jun; 14(1):13785. PubMed ID: 38877173 [TBL] [Abstract][Full Text] [Related]
16. Predicting permeability changes with injecting CO Yan H; Zhang J; Rahman SS; Zhou N; Suo Y Sci Total Environ; 2020 Feb; 705():135941. PubMed ID: 31838426 [TBL] [Abstract][Full Text] [Related]
17. Application of hybrid artificial intelligence model to predict coal strength alteration during CO Yan H; Zhang J; Zhou N; Li M Sci Total Environ; 2020 Apr; 711():135029. PubMed ID: 31812377 [TBL] [Abstract][Full Text] [Related]
18. Adsorption performance of mineral-carbon adsorbents derived from coal gasification fine ash: Prepared via low-temperature alkali fusion method. Chen Z; Tian X; Hou J; Li Z Environ Res; 2024 May; 248():118311. PubMed ID: 38278511 [TBL] [Abstract][Full Text] [Related]
19. Investigation on the high-temperature flow behavior of biomass and coal blended ash. Xu J; Yu G; Liu X; Zhao F; Chen X; Wang F Bioresour Technol; 2014 Aug; 166():494-9. PubMed ID: 24951936 [TBL] [Abstract][Full Text] [Related]
20. Rapid quantitative analysis of coal composition using laser-induced breakdown spectroscopy coupled with random forest algorithm. Du H; Ke S; Zhang W; Qi D; Sun T Anal Sci; 2024 Sep; 40(9):1709-1722. PubMed ID: 38836970 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]