These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 39130611)
1. Demonstration of a 263-GHz Traveling Wave Tube for Electron Paramagnetic Resonance Spectroscopy. Pan P; Zheng Y; Li Y; Song X; Feng Z; Feng J; Britt RD; Luhmann NC IEEE Trans Electron Devices; 2023 Nov; 70(11):5897-5902. PubMed ID: 39130611 [TBL] [Abstract][Full Text] [Related]
2. Demonstration of a 140-GHz 1-kW Confocal Gyro-Traveling-Wave Amplifier. Joye CD; Shapiro MA; Sirigiri JR; Temkin RJ IEEE Trans Electron Devices; 2009 May; 56(5):818-827. PubMed ID: 20054451 [TBL] [Abstract][Full Text] [Related]
3. A G-Band Broadband Continuous Wave Traveling Wave Tube for Wireless Communications. Feng Y; Bian X; Song B; Li Y; Pan P; Feng J Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295989 [TBL] [Abstract][Full Text] [Related]
4. Double-mode and double-beam staggered double-vane traveling-wave tube with high-power and broadband at terahertz band. Wang W; Zhang Z; Wang P; Zhao Y; Zhang F; Ruan C Sci Rep; 2022 Jul; 12(1):12012. PubMed ID: 35835793 [TBL] [Abstract][Full Text] [Related]
9. High-gain wide-band gyrotron traveling wave amplifier with a helically corrugated waveguide. Bratman VL; Cross AW; Denisov GG; He W; Phelps AD; Ronald K; Samsonov SV; Whyte CG; Young AR Phys Rev Lett; 2000 Mar; 84(12):2746-9. PubMed ID: 11017315 [TBL] [Abstract][Full Text] [Related]
10. Hyperbolic-cosine waveguide tapers and oversize rectangular waveguide for reduced broadband insertion loss in W-band electron paramagnetic resonance spectroscopy. II. Broadband characterization. Sidabras JW; Strangeway RA; Mett RR; Anderson JR; Mainali L; Hyde JS Rev Sci Instrum; 2016 Mar; 87(3):034704. PubMed ID: 27036800 [TBL] [Abstract][Full Text] [Related]
11. A Staggered Vane-Shaped Slot-Line Slow-Wave Structure for W-Band Dual-Sheet Electron-Beam-Traveling Wave Tubes. Wang Y; Guo J; Dong Y; Xu D; Zheng Y; Lu Z; Wang Z; Wang S Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931492 [TBL] [Abstract][Full Text] [Related]
12. Cyclotron resonance maser experiments in a bifilar helical waveguide. Aharony A; Drori R; Jerby E Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt B):7282-6. PubMed ID: 11102087 [TBL] [Abstract][Full Text] [Related]
13. A Novel Staggered Double-Segmented Grating Slow-Wave Structure for 340 GHz Traveling-Wave Tube. Wang Z; Zhu J; Lu Z; Duan J; Chen H; Wang S; Wang Z; Gong H; Gong Y Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430677 [TBL] [Abstract][Full Text] [Related]
14. Multiple-beam and double-mode staggered double vane travelling wave tube with ultra-wide band. Zhang Z; Ruan C; Fahad AK; Zhang C; Su Y; Wang P; He W Sci Rep; 2020 Nov; 10(1):20159. PubMed ID: 33214669 [TBL] [Abstract][Full Text] [Related]
16. Broadband Amplification of Low-Terahertz Signals Using Axis-Encircling Electrons in a Helically Corrugated Interaction Region. He W; Donaldson CR; Zhang L; Ronald K; Phelps ADR; Cross AW Phys Rev Lett; 2017 Nov; 119(18):184801. PubMed ID: 29219603 [TBL] [Abstract][Full Text] [Related]
17. Design of Ultra-Wideband Doherty Power Amplifier Using a Modified Combiner Integrated with Complex Combining Impedance. Chen J; Liu Z; Dong T; Shi W Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112223 [TBL] [Abstract][Full Text] [Related]
18. Silicon-based traveling-wave photodetector array (Si-TWPDA) with parallel optical feeding. Luo X; Song J; Tu X; Fang Q; Jia L; Huang Y; Liow TY; Yu M; Lo GQ Opt Express; 2014 Aug; 22(17):20020-6. PubMed ID: 25321212 [TBL] [Abstract][Full Text] [Related]
20. Design of a Compact 2-6 GHz High-Efficiency and High-Gain GaN Power Amplifier. Zhou Y; Wang S; Dai J; Luo J; Cheng Q Micromachines (Basel); 2024 Apr; 15(5):. PubMed ID: 38793174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]