These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 3913079)

  • 1. A discussion of procedures for ultrasonic intensity and power calculations from miniature hydrophone measurements.
    Harris GR
    Ultrasound Med Biol; 1985; 11(6):803-17. PubMed ID: 3913079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of two methods for determining ultrasonic intensity for medical transducers.
    Shombert DG; Robinson RA
    Ultrasonics; 1983 Sep; 21(5):234-6. PubMed ID: 6612895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are hydrophones of diameter 0.5 mm small enough to characterise diagnostic ultrasound equipment?
    Smith RA
    Phys Med Biol; 1989 Nov; 34(11):1593-607. PubMed ID: 2685834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of errors in intensity measurements of pulse echo ultrasound using miniature hydrophones.
    Fischella PS; Carson PL
    Med Phys; 1979; 6(5):404-11. PubMed ID: 492074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of the AIUM/NEMA, IEC and FDA (1980) definitions of various acoustic output parameters for ultrasonic transducers.
    Livett AJ; Preston RC
    Ultrasound Med Biol; 1985; 11(6):793-802. PubMed ID: 4095794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of in situ exposure to ultrasound: a proposed standard experimental method.
    Preston RC; Shaw A; Zeqiri B
    Ultrasound Med Biol; 1991; 17(4):333-9. PubMed ID: 1949345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of in situ exposure to ultrasound: an acoustical attenuation method.
    Preston RC; Shaw A; Zeqiri B
    Ultrasound Med Biol; 1991; 17(4):317-32. PubMed ID: 1949344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the repeatability and reproducibility of hydrophone measurements of medical ultrasound fields.
    Martin E; Treeby B
    J Acoust Soc Am; 2019 Mar; 145(3):1270. PubMed ID: 31067926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Focused ultrasound transducer spatial peak intensity estimation: a comparison of methods.
    Civale J; Rivens I; Shaw A; Ter Haar G
    Phys Med Biol; 2018 Mar; 63(5):055015. PubMed ID: 29437152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metrology for ultrasonic applications.
    Zeqiri B
    Prog Biophys Mol Biol; 2007; 93(1-3):138-52. PubMed ID: 17081597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoacoustic sensor for ultrasound power measurements and ultrasonic equipment calibration.
    Fay B; Rinker M; Lewin PA
    Ultrasound Med Biol; 1994; 20(4):367-73. PubMed ID: 8085293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of nonlinear fields on miniature hydrophone calibration using the planar scanning technique.
    Corbett SS
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):162-7. PubMed ID: 18290142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of two calibration methods for ultrasonic hydrophones.
    Gloersen WB; Harris GR; Stewart HF; Lewin PA
    Ultrasound Med Biol; 1982; 8(5):545-8. PubMed ID: 7147468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibration of ultrasonic hydrophone probes up to 100 MHz using time gating frequency analysis and finite amplitude waves.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A
    Ultrasonics; 2003 Jun; 41(4):247-54. PubMed ID: 12782255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Are current hydrophone low frequency response standards acceptable for measuring mechanical/cavitation indices?
    Harris GR
    Ultrasonics; 1996 Aug; 34(6):649-54. PubMed ID: 8844965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation of High-Intensity Therapeutic Ultrasound (HITU) Pressure Field Characterization: Effects of Hydrophone Choice, Nonlinearity, Spatial Averaging and Complex Deconvolution.
    Liu Y; Wear KA; Harris GR
    Ultrasound Med Biol; 2017 Oct; 43(10):2329-2342. PubMed ID: 28735734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic field characterization of a clinical magnetic resonance-guided high-intensity focused ultrasound system inside the magnet bore.
    Kothapalli SVVN; Altman MB; Partanen A; Wan L; Gach HM; Straube W; Hallahan DE; Chen H
    Med Phys; 2017 Sep; 44(9):4890-4899. PubMed ID: 28626862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multiple-frequency hydrophone calibration technique.
    Smith RA; Bacon DR
    J Acoust Soc Am; 1990 May; 87(5):2231-43. PubMed ID: 2189922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency response of PVDF needle-type hydrophones.
    Fay B; Ludwig G; Lankjaer C; Lewin PA
    Ultrasound Med Biol; 1994; 20(4):361-6. PubMed ID: 8085292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a fiber-optic displacement sensor for measurements in high-intensity focused ultrasound fields.
    Haller J; Wilkens V; Jenderka KV; Koch C
    J Acoust Soc Am; 2011 Jun; 129(6):3676-81. PubMed ID: 21682392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.