These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 39132714)

  • 1. Heat-stress memory enhances the acclimation of a migratory insect pest to global warming.
    Quan PQ; Guo PL; He J; Liu XD
    Mol Ecol; 2024 Sep; 33(17):e17493. PubMed ID: 39132714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose Dehydrogenases-Mediated Acclimation of an Important Rice Pest to Global Warming.
    Quan PQ; Li JR; Liu XD
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcriptome analysis of the rice leaf folder (Cnaphalocrocis medinalis) to heat acclimation.
    Quan PQ; Li MZ; Wang GR; Gu LL; Liu XD
    BMC Genomics; 2020 Jun; 21(1):450. PubMed ID: 32605538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cuticular protein genes involve heat acclimation of insect larvae under global warming.
    Guo PL; Guo ZQ; Liu XD
    Insect Mol Biol; 2022 Aug; 31(4):519-532. PubMed ID: 35403301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multigenerational heat acclimation increases thermal tolerance and expression levels of Hsp70 and Hsp90 in the rice leaf folder larvae.
    Gu LL; Li MZ; Wang GR; Liu XD
    J Therm Biol; 2019 Apr; 81():103-109. PubMed ID: 30975406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavioural adaptation of the rice leaf folder Cnaphalocrocis medinalis to short-term heat stress.
    Bodlah MA; Gu LL; Tan Y; Liu XD
    J Insect Physiol; 2017 Jul; 100():28-34. PubMed ID: 28522415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Host choice, settling and folding leaf behaviors of the larval rice leaf folder under heat stress.
    Bodlah MA; Zhu AX; Liu XD
    Bull Entomol Res; 2016 Dec; 106(6):809-817. PubMed ID: 27443747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat hardening of a larval amphibian is dependent on acclimation period and temperature.
    Dallas J; Warne RW
    J Exp Zool A Ecol Integr Physiol; 2023 May; 339(4):339-345. PubMed ID: 36811331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Acclimation Ability Mediated by Transcriptome Changes in Reef-Building Corals.
    Bay RA; Palumbi SR
    Genome Biol Evol; 2015 May; 7(6):1602-12. PubMed ID: 25979751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of short-term high temperature at different life stages on reproductive fitness in Mythimna separata (Lepidoptera: Noctuidae).
    Lv W; Shu Y; Wang F
    J Econ Entomol; 2024 Aug; 117(4):1468-1475. PubMed ID: 38836579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and physiological responses predict acclimation limits in juvenile brook trout (Salvelinus fontinalis).
    Mackey TE; Hasler CT; Durhack T; Jeffrey JD; Macnaughton CJ; Ta K; Enders EC; Jeffries KM
    J Exp Biol; 2021 Aug; 224(16):. PubMed ID: 34382658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oviposition Preference and Larval Performance of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) on Rice Genotypes.
    Liao CT; Chen CL
    J Econ Entomol; 2017 Jun; 110(3):1291-1297. PubMed ID: 28334207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of acclimation on heat-escape temperatures of two aphid species: Implications for estimating behavioral response of insects to climate warming.
    Ma G; Ma CS
    J Insect Physiol; 2012 Mar; 58(3):303-9. PubMed ID: 21939662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal acclimation alters both basal heat shock protein gene expression and the heat shock response in juvenile lake whitefish (Coregonus clupeaformis).
    Manzon LA; Zak MA; Agee M; Boreham DR; Wilson JY; Somers CM; Manzon RG
    J Therm Biol; 2022 Feb; 104():103185. PubMed ID: 35180964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rice Leaf Folder Larvae Alter Their Shelter-Building Behavior and Shelter Structure in Response to Heat Stress.
    Bodlah MA; Gu LL; Wang GR; Liu XD
    J Econ Entomol; 2019 Feb; 112(1):149-155. PubMed ID: 30321386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature thresholds and thermal requirements for the development of the rice leaf folder, Cnaphalocrocis medinalis.
    Padmavathi C; Katti G; Sailaja V; Padmakumari AP; Jhansilakshmi V; Prabhakar M; Prasad YG
    J Insect Sci; 2013; 13():96. PubMed ID: 24205891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acclimation of entomopathogenic nematodes to novel temperatures: trehalose accumulation and the acquisition of thermotolerance.
    Jagdale GB; Grewal PS
    Int J Parasitol; 2003 Feb; 33(2):145-52. PubMed ID: 12633652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity of upper thermal limits to acute and chronic temperature variation in Manduca sexta larvae.
    Kingsolver JG; MacLean HJ; Goddin SB; Augustine KE
    J Exp Biol; 2016 May; 219(Pt 9):1290-4. PubMed ID: 26944498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transcriptomic and proteomic responses of Daphnia pulex to changes in temperature and food supply comprise environment-specific and clone-specific elements.
    Becker D; Reydelet Y; Lopez JA; Jackson C; Colbourne JK; Hawat S; Hippler M; Zeis B; Paul RJ
    BMC Genomics; 2018 May; 19(1):376. PubMed ID: 29783951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms underlying plasticity in a thermally varying environment.
    Salachan PV; Sørensen JG
    Mol Ecol; 2022 Jun; 31(11):3174-3191. PubMed ID: 35397190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.