These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 39132983)
21. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. Burke MS; Kast MG; Trotochaud L; Smith AM; Boettcher SW J Am Chem Soc; 2015 Mar; 137(10):3638-48. PubMed ID: 25700234 [TBL] [Abstract][Full Text] [Related]
22. Surface Reconstruction Regulation of Co Zeng Y; Zheng J; Zhang H; Yao F; Deng D; Wu Q; Makgwane PR; Liang H Small; 2024 Sep; ():e2406465. PubMed ID: 39225379 [TBL] [Abstract][Full Text] [Related]
23. Reviving Oxygen Evolution Electrocatalysis of Bulk La-Ni Intermetallics via Gaseous Hydrogen Engineering. Chen Z; Yang H; Mebs S; Dau H; Driess M; Wang Z; Kang Z; Menezes PW Adv Mater; 2023 Mar; 35(11):e2208337. PubMed ID: 36528302 [TBL] [Abstract][Full Text] [Related]
24. CoS Ma Q; Liao R; Lu Y; Liu S; Tang Y; Zhu Y; Wu D Chem Asian J; 2021 Oct; 16(20):3102-3106. PubMed ID: 34448347 [TBL] [Abstract][Full Text] [Related]
25. Highly Efficient Alkaline Water Splitting with Ru-Doped Co-V Layered Double Hydroxide Nanosheets as a Bifunctional Electrocatalyst. Li W; Feng B; Yi L; Li J; Hu W ChemSusChem; 2021 Jan; 14(2):730-737. PubMed ID: 33225588 [TBL] [Abstract][Full Text] [Related]
26. In Situ Regulating Cobalt/Iron Oxide-Oxyhydroxide Exchange by Dynamic Iron Incorporation for Robust Oxygen Evolution at Large Current Density. Li D; Xiang R; Yu F; Zeng J; Zhang Y; Zhou W; Liao L; Zhang Y; Tang D; Zhou H Adv Mater; 2024 Feb; 36(5):e2305685. PubMed ID: 37747155 [TBL] [Abstract][Full Text] [Related]
27. Homogeneous Metal Nitrate Hydroxide Nanoarrays Grown on Nickel Foam for Efficient Electrocatalytic Oxygen Evolution. Ma Y; Chu J; Li Z; Rakov D; Han X; Du Y; Song B; Xu P Small; 2018 Dec; 14(52):e1803783. PubMed ID: 30468561 [TBL] [Abstract][Full Text] [Related]
28. γ-FeO(OH) with multiple surface terminations: Intrinsically active for the electrocatalytic oxygen evolution reaction. Mallick L; Rajput A; Adak MK; Kundu A; Choudhary P; Chakraborty B Dalton Trans; 2022 Oct; 51(39):15094-15110. PubMed ID: 36125011 [TBL] [Abstract][Full Text] [Related]
29. Insights into Correlation among Surface-Structure-Activity of Cobalt-Derived Pre-Catalyst for Oxygen Evolution Reaction. Li R; Hu B; Yu T; Chen H; Wang Y; Song S Adv Sci (Weinh); 2020 Mar; 7(5):1902830. PubMed ID: 32154075 [TBL] [Abstract][Full Text] [Related]
30. 3 D Porous Nickel-Cobalt Nitrides Supported on Nickel Foam as Efficient Electrocatalysts for Overall Water Splitting. Wang Y; Zhang B; Pan W; Ma H; Zhang J ChemSusChem; 2017 Nov; 10(21):4170-4177. PubMed ID: 28857449 [TBL] [Abstract][Full Text] [Related]
31. Efficient electrocatalytic water splitting by bimetallic cobalt iron boride nanoparticles with controlled electronic structure. Qiang C; Zhang L; He H; Liu Y; Zhao Y; Sheng T; Liu S; Wu X; Fang Z J Colloid Interface Sci; 2021 Dec; 604():650-659. PubMed ID: 34280763 [TBL] [Abstract][Full Text] [Related]
32. Bimetallic co-doping engineering over nickel-based oxy-hydroxide enables high-performance electrocatalytic oxygen evolution. Li R; Ren P; Yang P; Li Y; Zhang H; Liu A; Wen S; Zhang J; An M J Colloid Interface Sci; 2023 Feb; 631(Pt B):173-181. PubMed ID: 36401925 [TBL] [Abstract][Full Text] [Related]
33. Engineering high-valence metal-enriched cobalt oxyhydroxide catalysts for an enhanced OER under near-neutral pH conditions. Dong R; Gao J; Vo TG; Xi S; Kee CW; Cao X; Chu W; Liu Y Nanoscale; 2024 Jul; 16(26):12482-12491. PubMed ID: 38856654 [TBL] [Abstract][Full Text] [Related]
34. Amorphous Metallic NiFeP: A Conductive Bulk Material Achieving High Activity for Oxygen Evolution Reaction in Both Alkaline and Acidic Media. Hu F; Zhu S; Chen S; Li Y; Ma L; Wu T; Zhang Y; Wang C; Liu C; Yang X; Song L; Yang X; Xiong Y Adv Mater; 2017 Aug; 29(32):. PubMed ID: 28639333 [TBL] [Abstract][Full Text] [Related]
35. Cubic Nanostructures of Nickel-Cobalt Carbonate Hydroxide Hydrate as a High-Performance Oxygen Evolution Reaction Electrocatalyst in Alkaline and Near-Neutral Media. Karthick K; Subhashini S; Kumar R; Sethuram Markandaraj S; Teepikha MM; Kundu S Inorg Chem; 2020 Nov; 59(22):16690-16702. PubMed ID: 33103426 [TBL] [Abstract][Full Text] [Related]
36. Oxygen Vacancy and Core-Shell Heterojunction Engineering of Anemone-Like CoP@CoOOH Bifunctional Electrocatalyst for Efficient Overall Water Splitting. Zhang B; Shan J; Wang W; Tsiakaras P; Li Y Small; 2022 Mar; 18(12):e2106012. PubMed ID: 35064631 [TBL] [Abstract][Full Text] [Related]
37. Fluoride-Induced Dynamic Surface Self-Reconstruction Produces Unexpectedly Efficient Oxygen-Evolution Catalyst. Zhang B; Jiang K; Wang H; Hu S Nano Lett; 2019 Jan; 19(1):530-537. PubMed ID: 30517786 [TBL] [Abstract][Full Text] [Related]
38. The Dai W; Hu F; Yang X; Wu B; Zhao C; Zhang Y; Huang S Dalton Trans; 2023 Dec; 52(47):18000-18009. PubMed ID: 37982693 [TBL] [Abstract][Full Text] [Related]
39. Cr-Dopant Induced Breaking of Scaling Relations in CoFe Layered Double Hydroxides for Improvement of Oxygen Evolution Reaction. Wen L; Zhang X; Liu J; Li X; Xing C; Lyu X; Cai W; Wang W; Li Y Small; 2019 Aug; 15(35):e1902373. PubMed ID: 31304683 [TBL] [Abstract][Full Text] [Related]
40. Unraveling a Graphene Exfoliation Technique Analogy in the Making of Ultrathin Nickel-Iron Oxyhydroxides@Nickel Foam to Promote the OER. Ahmed Z; Krishankant ; Rai R; Kumar R; Maruyama T; Bera C; Bagchi V ACS Appl Mater Interfaces; 2021 Nov; 13(46):55281-55291. PubMed ID: 34779604 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]