These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 39133073)

  • 1. On synergy between ultrahigh throughput screening and machine learning in biocatalyst engineering.
    Gantz M; Mathis SV; Nintzel FEH; Lio P; Hollfelder F
    Faraday Discuss; 2024 Sep; 252(0):89-114. PubMed ID: 39133073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrahigh-Throughput Enzyme Engineering and Discovery in
    Gantz M; Neun S; Medcalf EJ; van Vliet LD; Hollfelder F
    Chem Rev; 2023 May; 123(9):5571-5611. PubMed ID: 37126602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Getting Momentum: From Biocatalysis to Advanced Synthetic Biology.
    Badenhorst CPS; Bornscheuer UT
    Trends Biochem Sci; 2018 Mar; 43(3):180-198. PubMed ID: 29426712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speeding up enzyme discovery and engineering with ultrahigh-throughput methods.
    Bunzel HA; Garrabou X; Pott M; Hilvert D
    Curr Opin Struct Biol; 2018 Feb; 48():149-156. PubMed ID: 29413955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From molecular engineering to process engineering: development of high-throughput screening methods in enzyme directed evolution.
    Ye L; Yang C; Yu H
    Appl Microbiol Biotechnol; 2018 Jan; 102(2):559-567. PubMed ID: 29181567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in ultrahigh-throughput screening for directed enzyme evolution.
    Markel U; Essani KD; Besirlioglu V; Schiffels J; Streit WR; Schwaneberg U
    Chem Soc Rev; 2020 Jan; 49(1):233-262. PubMed ID: 31815263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated in vivo enzyme engineering accelerates biocatalyst optimization.
    Orsi E; Schada von Borzyskowski L; Noack S; Nikel PI; Lindner SN
    Nat Commun; 2024 Apr; 15(1):3447. PubMed ID: 38658554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UMI-linked consensus sequencing enables phylogenetic analysis of directed evolution.
    Zurek PJ; Knyphausen P; Neufeld K; Pushpanath A; Hollfelder F
    Nat Commun; 2020 Nov; 11(1):6023. PubMed ID: 33243970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput screening, next generation sequencing and machine learning: advanced methods in enzyme engineering.
    Vanella R; Kovacevic G; Doffini V; Fernández de Santaella J; Nash MA
    Chem Commun (Camb); 2022 Feb; 58(15):2455-2467. PubMed ID: 35107442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Droplet-based microfluidic high-throughput screening of heterologous enzymes secreted by the yeast Yarrowia lipolytica.
    Beneyton T; Thomas S; Griffiths AD; Nicaud JM; Drevelle A; Rossignol T
    Microb Cell Fact; 2017 Jan; 16(1):18. PubMed ID: 28143479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PyPEF-An Integrated Framework for Data-Driven Protein Engineering.
    Siedhoff NE; Illig AM; Schwaneberg U; Davari MD
    J Chem Inf Model; 2021 Jul; 61(7):3463-3476. PubMed ID: 34260225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning-assisted enzyme engineering.
    Siedhoff NE; Schwaneberg U; Davari MD
    Methods Enzymol; 2020; 643():281-315. PubMed ID: 32896285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrahigh throughput screening for enzyme function in droplets.
    Neun S; Zurek PJ; Kaminski TS; Hollfelder F
    Methods Enzymol; 2020; 643():317-343. PubMed ID: 32896286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning to navigate fitness landscapes for protein engineering.
    Freschlin CR; Fahlberg SA; Romero PA
    Curr Opin Biotechnol; 2022 Jun; 75():102713. PubMed ID: 35413604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-free Directed Evolution of a Protease in Microdroplets at Ultrahigh Throughput.
    Holstein JM; Gylstorff C; Hollfelder F
    ACS Synth Biol; 2021 Feb; 10(2):252-257. PubMed ID: 33502841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed evolution for enzyme development in biocatalysis.
    Gargiulo S; Soumillion P
    Curr Opin Chem Biol; 2021 Apr; 61():107-113. PubMed ID: 33385931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revolutionizing enzyme engineering through artificial intelligence and machine learning.
    Singh N; Malik S; Gupta A; Srivastava KR
    Emerg Top Life Sci; 2021 May; 5(1):113-125. PubMed ID: 33835131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning-guided co-optimization of fitness and diversity facilitates combinatorial library design in enzyme engineering.
    Ding K; Chin M; Zhao Y; Huang W; Mai BK; Wang H; Liu P; Yang Y; Luo Y
    Nat Commun; 2024 Jul; 15(1):6392. PubMed ID: 39080249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancing Antibody Engineering through Synthetic Evolution and Machine Learning.
    Irvine EB; Reddy ST
    J Immunol; 2024 Jan; 212(2):235-243. PubMed ID: 38166249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrahigh-throughput-directed enzyme evolution by absorbance-activated droplet sorting (AADS).
    Gielen F; Hours R; Emond S; Fischlechner M; Schell U; Hollfelder F
    Proc Natl Acad Sci U S A; 2016 Nov; 113(47):E7383-E7389. PubMed ID: 27821774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.