These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 39133098)
1. A computational approach to developing a multi-epitope vaccine for combating Pseudomonas aeruginosa-induced pneumonia and sepsis. Roy SK; Biswas MS; Foyzur Raman M; Hasan R; Rahmann Z; Uddin P K MM Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39133098 [TBL] [Abstract][Full Text] [Related]
2. Immunoinformatics-aided design of a new multi-epitope vaccine adjuvanted with domain 4 of pneumolysin against Streptococcus pneumoniae strains. Shafaghi M; Bahadori Z; Madanchi H; Ranjbar MM; Shabani AA; Mousavi SF BMC Bioinformatics; 2023 Feb; 24(1):67. PubMed ID: 36829109 [TBL] [Abstract][Full Text] [Related]
3. In silico design of a multi-epitope vaccine against HPV16/18. Sanami S; Rafieian-Kopaei M; Dehkordi KA; Pazoki-Toroudi H; Azadegan-Dehkordi F; Mobini GR; Alizadeh M; Nezhad MS; Ghasemi-Dehnoo M; Bagheri N BMC Bioinformatics; 2022 Aug; 23(1):311. PubMed ID: 35918631 [TBL] [Abstract][Full Text] [Related]
4. Immunoinformatics-Based Designing of Novel and Potent Multi-Epitope PSA D15 and Cag11 Immunogens for Helicobacter pylori Immunodiagnostic Assay Development. Moges Eskeziyaw B; Waihenya R; Maina N; Muuo Nzou S Helicobacter; 2024; 29(3):e13104. PubMed ID: 38923222 [TBL] [Abstract][Full Text] [Related]
5. Prioritization of potential vaccine targets using comparative proteomics and designing of the chimeric multi-epitope vaccine against Pseudomonas aeruginosa. Solanki V; Tiwari M; Tiwari V Sci Rep; 2019 Mar; 9(1):5240. PubMed ID: 30918289 [TBL] [Abstract][Full Text] [Related]
6. Immunoinformatics design of multivalent chimeric vaccine for modulation of the immune system in Pseudomonas aeruginosa infection. Aminnezhad S; Abdi-Ali A; Ghazanfari T; Bandehpour M; Zarrabi M Infect Genet Evol; 2020 Nov; 85():104462. PubMed ID: 32682863 [TBL] [Abstract][Full Text] [Related]
7. Design of Epitope-Based Peptide Vaccine against Pseudomonas aeruginosa Fructose Bisphosphate Aldolase Protein Using Immunoinformatics. Elhag M; Alaagib RM; Ahmed NM; Abubaker M; Haroun EM; Albagi SOA; Hassan MA J Immunol Res; 2020; 2020():9475058. PubMed ID: 33204735 [No Abstract] [Full Text] [Related]
8. A fusion protein vaccine containing OprF epitope 8, OprI, and type A and B flagellins promotes enhanced clearance of nonmucoid Pseudomonas aeruginosa. Weimer ET; Lu H; Kock ND; Wozniak DJ; Mizel SB Infect Immun; 2009 Jun; 77(6):2356-66. PubMed ID: 19349426 [TBL] [Abstract][Full Text] [Related]
9. Designing multi-epitope vaccine candidates against functional amyloids in Pseudomonas aeruginosa through immunoinformatic and structural bioinformatics approach. Beg AZ; Farhat N; Khan AU Infect Genet Evol; 2021 Sep; 93():104982. PubMed ID: 34186254 [TBL] [Abstract][Full Text] [Related]
10. Immunoinformatics design of novel multi-epitope vaccine against Trueperella Pyogenes using collagen adhesion protein, fimbriae, and pyolysin. Beikzadeh B Arch Microbiol; 2024 Feb; 206(3):90. PubMed ID: 38315222 [TBL] [Abstract][Full Text] [Related]
11. Construction of a Protective Vaccine Against Lipopolysaccharide-Heterologous Liu C; Pan X; Xia B; Chen F; Jin Y; Bai F; Priebe G; Cheng Z; Jin S; Wu W Front Immunol; 2018; 9():1737. PubMed ID: 30093906 [No Abstract] [Full Text] [Related]
12. Immunoinformatics design of a novel epitope-based vaccine candidate against dengue virus. Fadaka AO; Sibuyi NRS; Martin DR; Goboza M; Klein A; Madiehe AM; Meyer M Sci Rep; 2021 Oct; 11(1):19707. PubMed ID: 34611250 [TBL] [Abstract][Full Text] [Related]
13. Immunopotentiation of the engineered low-molecular-weight pilin targeting Pseudomonas aeruginosa: A combination of immunoinformatics investigation and active immunization. Ahmadbeigi Y; Chirani AS; Soleimani N; Mahdavi M; Goudarzi M Mol Immunol; 2020 Aug; 124():70-82. PubMed ID: 32540517 [TBL] [Abstract][Full Text] [Related]
14. [Production of hybrid protein OprF-OprL of Pseudomonas aeruginosa]. Kaloshin AA; Mikhaĭlova NA; Leonova EI Zh Mikrobiol Epidemiol Immunobiol; 2012; (3):35-43. PubMed ID: 22830272 [TBL] [Abstract][Full Text] [Related]
15. Immunoinformatics design of multi-epitope vaccine using OmpA, OmpD and enterotoxin against non-typhoidal salmonellosis. Beikzadeh B BMC Bioinformatics; 2023 Feb; 24(1):63. PubMed ID: 36823524 [TBL] [Abstract][Full Text] [Related]
16. Immunization with outer membrane proteins (OprF and OprI) and flagellin B protects mice from pulmonary infection with mucoid and nonmucoid Pseudomonas aeruginosa. Hassan R; El-Naggar W; Abd El-Aziz AM; Shaaban M; Kenawy HI; Ali YM J Microbiol Immunol Infect; 2018 Jun; 51(3):312-320. PubMed ID: 28291719 [TBL] [Abstract][Full Text] [Related]
17. Chimeric animal and plant viruses expressing epitopes of outer membrane protein F as a combined vaccine against Pseudomonas aeruginosa lung infection. Gilleland HE; Gilleland LB; Staczek J; Harty RN; García-Sastre A; Palese P; Brennan FR; Hamilton WD; Bendahmane M; Beachy RN FEMS Immunol Med Microbiol; 2000 Apr; 27(4):291-7. PubMed ID: 10727884 [TBL] [Abstract][Full Text] [Related]
18. Immunoinformatics design and synthesis of a multi-epitope vaccine against Helicobacter pylori based on lipid nanoparticles. Jebali A; Esmaeilzadeh A; Esmaeilzadeh MK; Shabani S Sci Rep; 2024 Aug; 14(1):17910. PubMed ID: 39095538 [TBL] [Abstract][Full Text] [Related]
19. Anti-PcrV antibody strategies against virulent Pseudomonas aeruginosa. Sawa T; Ito E; Nguyen VH; Haight M Hum Vaccin Immunother; 2014; 10(10):2843-52. PubMed ID: 25483637 [TBL] [Abstract][Full Text] [Related]
20. Prediction of vaccine candidates against Pseudomonas aeruginosa: An integrated genomics and proteomics approach. Rashid MI; Naz A; Ali A; Andleeb S Genomics; 2017 Jul; 109(3-4):274-283. PubMed ID: 28487172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]