These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 39133641)

  • 1. Revealing Ion Adsorption and Charging Mechanisms in Layered Metal-Organic Framework Supercapacitors with Solid-State Nuclear Magnetic Resonance.
    Balhatchet CJ; Gittins JW; Shin SJ; Ge K; Liu X; Trisukhon T; Sharma S; Kress T; Taberna PL; Simon P; Walsh A; Forse AC
    J Am Chem Soc; 2024 Aug; 146(33):23171-23181. PubMed ID: 39133641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding Electrolyte Ion Size Effects on the Performance of Conducting Metal-Organic Framework Supercapacitors.
    Gittins JW; Ge K; Balhatchet CJ; Taberna PL; Simon P; Forse AC
    J Am Chem Soc; 2024 May; 146(18):12473-12484. PubMed ID: 38716517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscopic Origin of Electrochemical Capacitance in Metal-Organic Frameworks.
    Shin SJ; Gittins JW; Golomb MJ; Forse AC; Walsh A
    J Am Chem Soc; 2023 Jul; 145(26):14529-14538. PubMed ID: 37341453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling of a conductive Ni
    Nazir A; Le HTT; Min CW; Kasbe A; Kim J; Jin CS; Park CJ
    Nanoscale; 2020 Jan; 12(3):1629-1642. PubMed ID: 31872835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-state NMR studies of supercapacitors.
    Griffin JM; Forse AC; Grey CP
    Solid State Nucl Magn Reson; 2016; 74-75():16-35. PubMed ID: 26974032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors.
    Griffin JM; Forse AC; Tsai WY; Taberna PL; Simon P; Grey CP
    Nat Mater; 2015 Aug; 14(8):812-9. PubMed ID: 26099110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Electrodeposition of Electrically Conducting Ni
    Behboudikhiavi S; Chanteux G; Babu B; Faniel S; Marlec F; Robert K; Magnin D; Lucaccioni F; Omale JO; Apostol P; Piraux L; Lethien C; Vlad A
    Small; 2024 Sep; 20(36):e2401509. PubMed ID: 38698603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ NMR spectroscopy of supercapacitors: insight into the charge storage mechanism.
    Wang H; Forse AC; Griffin JM; Trease NM; Trognko L; Taberna PL; Simon P; Grey CP
    J Am Chem Soc; 2013 Dec; 135(50):18968-80. PubMed ID: 24274637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Situ Real-Time Mechanical and Morphological Characterization of Electrodes for Electrochemical Energy Storage and Conversion by Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring.
    Shpigel N; Levi MD; Sigalov S; Daikhin L; Aurbach D
    Acc Chem Res; 2018 Jan; 51(1):69-79. PubMed ID: 29297669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conductive Metal-Organic Frameworks for Supercapacitors.
    Niu L; Wu T; Chen M; Yang L; Yang J; Wang Z; Kornyshev AA; Jiang H; Bi S; Feng G
    Adv Mater; 2022 Dec; 34(52):e2200999. PubMed ID: 35358341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR.
    Deschamps M; Gilbert E; Azais P; Raymundo-Piñero E; Ammar MR; Simon P; Massiot D; Béguin F
    Nat Mater; 2013 Apr; 12(4):351-8. PubMed ID: 23416727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical Doping and Structural Modulation of Conductive Metal-Organic Frameworks.
    Zhou S; Liu T; Strømme M; Xu C
    Angew Chem Int Ed Engl; 2024 Apr; 63(14):e202318387. PubMed ID: 38349735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-to-Semiconductor Transition in Two-Dimensional Metal-Organic Frameworks: An
    Zhang Z; Dell'Angelo D; Momeni MR; Shi Y; Shakib FA
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25270-25279. PubMed ID: 34015222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ruthenium(II) complex-grafted conductive metal-organic frameworks with conductivity- and confinement-enhanced electrochemiluminescence for ultrasensitive biosensing application.
    Zhang JL; Gao S; Yang Y; Liang WB; Lu ML; Zhang XY; Xiao HX; Li Y; Yuan R; Xiao DR
    Biosens Bioelectron; 2023 May; 227():115157. PubMed ID: 36841115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conductive Ni
    Zhao W; Chen T; Wang W; Jin B; Peng J; Bi S; Jiang M; Liu S; Zhao Q; Huang W
    Sci Bull (Beijing); 2020 Nov; 65(21):1803-1811. PubMed ID: 36659120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic Solvent Boosts Charge Storage and Charging Dynamics of Conductive MOF Supercapacitors.
    Chen M; Wu T; Niu L; Ye T; Dai W; Zeng L; Kornyshev AA; Wang Z; Liu Z; Feng G
    Adv Mater; 2024 Jul; 36(30):e2403202. PubMed ID: 38751336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the Mechanism of High Capacitance in Nickel Hexaaminobenzene-Based Conductive Metal-Organic Frameworks in Aqueous Electrolytes.
    Lukatskaya MR; Feng D; Bak SM; To JWF; Yang XQ; Cui Y; Feldblyum JI; Bao Z
    ACS Nano; 2020 Nov; 14(11):15919-15925. PubMed ID: 33166110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conductive MOF electrodes for stable supercapacitors with high areal capacitance.
    Sheberla D; Bachman JC; Elias JS; Sun CJ; Shao-Horn Y; Dincă M
    Nat Mater; 2017 Feb; 16(2):220-224. PubMed ID: 27723738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR Study of Ion Dynamics and Charge Storage in Ionic Liquid Supercapacitors.
    Forse AC; Griffin JM; Merlet C; Bayley PM; Wang H; Simon P; Grey CP
    J Am Chem Soc; 2015 Jun; 137(22):7231-42. PubMed ID: 25973552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A portable ascorbic acid in sweat analysis system based on highly crystalline conductive nickel-based metal-organic framework (Ni-MOF).
    Wang L; Pan L; Han X; Ha MN; Li K; Yu H; Zhang Q; Li Y; Hou C; Wang H
    J Colloid Interface Sci; 2022 Jun; 616():326-337. PubMed ID: 35219198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.