These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 39133748)
1. 3D-Printed Silk Proteins for Bone Tissue Regeneration and Associated Immunomodulation. Waidi YO; Debnath S; Datta S; Chatterjee K Biomacromolecules; 2024 Sep; 25(9):5512-5540. PubMed ID: 39133748 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional (3D) printed scaffold and material selection for bone repair. Zhang L; Yang G; Johnson BN; Jia X Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607 [TBL] [Abstract][Full Text] [Related]
3. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Ma H; Feng C; Chang J; Wu C Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201 [TBL] [Abstract][Full Text] [Related]
4. 3D printing with silk: considerations and applications. DeBari MK; Keyser MN; Bai MA; Abbott RD Connect Tissue Res; 2020 Mar; 61(2):163-173. PubMed ID: 30558445 [TBL] [Abstract][Full Text] [Related]
5. The Application of Three-Dimensional-Printed Hydrogels in Bone Tissue Engineering. Zhang C; Shi T; Wu D; Hu D; Li W; Fei J; Liu W Tissue Eng Part B Rev; 2024 Oct; 30(5):492-506. PubMed ID: 38131273 [TBL] [Abstract][Full Text] [Related]
6. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration. Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946 [TBL] [Abstract][Full Text] [Related]
7. 3D-printed porous tantalum artificial bone scaffolds: fabrication, properties, and applications. Yu H; Xu M; Duan Q; Li Y; Liu Y; Song L; Cheng L; Ying J; Zhao D Biomed Mater; 2024 May; 19(4):. PubMed ID: 38697199 [TBL] [Abstract][Full Text] [Related]
8. 3D printed polymer-mineral composite biomaterials for bone tissue engineering: Fabrication and characterization. Babilotte J; Guduric V; Le Nihouannen D; Naveau A; Fricain JC; Catros S J Biomed Mater Res B Appl Biomater; 2019 Nov; 107(8):2579-2595. PubMed ID: 30848068 [TBL] [Abstract][Full Text] [Related]
9. Osteoblast and osteoclast activity on collagen-based 3D printed scaffolds enriched with strontium-doped bioactive glasses and hydroxyapatite nanorods for bone tissue engineering. Borciani G; Montalbano G; Perut F; Ciapetti G; Baldini N; Vitale-Brovarone C Biomed Mater; 2024 Sep; 19(6):. PubMed ID: 39173660 [TBL] [Abstract][Full Text] [Related]
10. Mechanical and in vitro study of 3D printed silk fibroin and bone-based composites biomaterials for bone implant application. Ansari AI; Ahmad Sheikh N; Kumar N Proc Inst Mech Eng H; 2024 Jul; 238(7):774-792. PubMed ID: 39045911 [TBL] [Abstract][Full Text] [Related]
11. Recent Advances in 3D Printing of Smart Scaffolds for Bone Tissue Engineering and Regeneration. Yuan X; Zhu W; Yang Z; He N; Chen F; Han X; Zhou K Adv Mater; 2024 Aug; 36(34):e2403641. PubMed ID: 38861754 [TBL] [Abstract][Full Text] [Related]
12. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017 [TBL] [Abstract][Full Text] [Related]
13. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES]. Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872 [TBL] [Abstract][Full Text] [Related]
14. Three-Dimensional Printed Silk Fibroin/Hyaluronic Acid Scaffold with Functionalized Modification Results in Excellent Mechanical Strength and Efficient Endogenous Cell Recruitment for Articular Cartilage Regeneration. Shi W; Zhang J; Gao Z; Hu F; Kong S; Hu X; Zhao F; Ao Y; Shao Z Int J Mol Sci; 2024 Sep; 25(19):. PubMed ID: 39408852 [TBL] [Abstract][Full Text] [Related]
15. Advances in 3D printing of composite scaffolds for the repairment of bone tissue associated defects. Anandhapadman A; Venkateswaran A; Jayaraman H; Veerabadran Ghone N Biotechnol Prog; 2022 May; 38(3):e3234. PubMed ID: 35037419 [TBL] [Abstract][Full Text] [Related]
16. Four-Dimensional Printing and Shape Memory Materials in Bone Tissue Engineering. Zhang X; Yang Y; Yang Z; Ma R; Aimaijiang M; Xu J; Zhang Y; Zhou Y Int J Mol Sci; 2023 Jan; 24(1):. PubMed ID: 36614258 [TBL] [Abstract][Full Text] [Related]
17. Personalized 3D printed bone scaffolds: A review. Mirkhalaf M; Men Y; Wang R; No Y; Zreiqat H Acta Biomater; 2023 Jan; 156():110-124. PubMed ID: 35429670 [TBL] [Abstract][Full Text] [Related]
18. A Comprehensive Review on Silk Fibroin as a Persuasive Biomaterial for Bone Tissue Engineering. Li M; You J; Qin Q; Liu M; Yang Y; Jia K; Zhang Y; Zhou Y Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768980 [TBL] [Abstract][Full Text] [Related]
19. Fabrication and Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125 [TBL] [Abstract][Full Text] [Related]
20. Design of bone scaffolds with calcium phosphate and its derivatives by 3D printing: A review. Darghiasi SF; Farazin A; Ghazali HS J Mech Behav Biomed Mater; 2024 Mar; 151():106391. PubMed ID: 38211501 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]