These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 39133901)

  • 1. Dual-branch Transformer for semi-supervised medical image segmentation.
    Huang X; Zhu Y; Shao M; Xia M; Shen X; Wang P; Wang X
    J Appl Clin Med Phys; 2024 Oct; 25(10):e14483. PubMed ID: 39133901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Combination of CNN and Transformer for Dual-Teacher Uncertainty-guided Semi-supervised Medical Image Segmentation.
    Xiao Z; Su Y; Deng Z; Zhang W
    Comput Methods Programs Biomed; 2022 Nov; 226():107099. PubMed ID: 36116398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncertainty-guided cross learning via CNN and transformer for semi-supervised honeycomb lung lesion segmentation.
    Zi-An Z; Xiu-Fang F; Xiao-Qiang R; Yun-Yun D
    Phys Med Biol; 2023 Dec; 68(24):. PubMed ID: 37988756
    [No Abstract]   [Full Text] [Related]  

  • 4. URCA: Uncertainty-based region clipping algorithm for semi-supervised medical image segmentation.
    Qin C; Wang Y; Zhang J
    Comput Methods Programs Biomed; 2024 Sep; 254():108278. PubMed ID: 38878360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A modality-collaborative convolution and transformer hybrid network for unpaired multi-modal medical image segmentation with limited annotations.
    Liu H; Zhuang Y; Song E; Xu X; Ma G; Cetinkaya C; Hung CC
    Med Phys; 2023 Sep; 50(9):5460-5478. PubMed ID: 36864700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semi-TMS: an efficient regularization-oriented triple-teacher semi-supervised medical image segmentation model.
    Chen W; Zhou S; Liu X; Chen Y
    Phys Med Biol; 2023 Oct; 68(20):. PubMed ID: 37699409
    [No Abstract]   [Full Text] [Related]  

  • 7. Dual-consistency guidance semi-supervised medical image segmentation with low-level detail feature augmentation.
    Wang B; Ju M; Zhang X; Yang Y; Tian X
    Comput Biol Med; 2024 Oct; 181():109046. PubMed ID: 39205345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated segmentation of lesions and organs at risk on [
    Yazdani E; Karamzadeh-Ziarati N; Cheshmi SS; Sadeghi M; Geramifar P; Vosoughi H; Jahromi MK; Kheradpisheh SR
    Cancer Imaging; 2024 Feb; 24(1):30. PubMed ID: 38424612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.
    Chaitanya K; Erdil E; Karani N; Konukoglu E
    Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SwinCross: Cross-modal Swin transformer for head-and-neck tumor segmentation in PET/CT images.
    Li GY; Chen J; Jang SI; Gong K; Li Q
    Med Phys; 2024 Mar; 51(3):2096-2107. PubMed ID: 37776263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FDB-Net: Fusion double branch network combining CNN and transformer for medical image segmentation.
    Jiang Z; Wu Y; Huang L; Gu M
    J Xray Sci Technol; 2024; 32(4):931-951. PubMed ID: 38848160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new architecture combining convolutional and transformer-based networks for automatic 3D multi-organ segmentation on CT images.
    Li C; Bagher-Ebadian H; Sultan R; Elshaikh M; Movsas B; Zhu D; Chetty IJ
    Med Phys; 2023 Nov; 50(11):6990-7002. PubMed ID: 37738468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image-level supervision and self-training for transformer-based cross-modality tumor segmentation.
    de Boisredon d'Assier MA; Portafaix A; Vorontsov E; Le WT; Kadoury S
    Med Image Anal; 2024 Oct; 97():103287. PubMed ID: 39111265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A semi-supervised learning method of latent features based on convolutional neural networks for CT metal artifact reduction.
    Shi Z; Wang N; Kong F; Cao H; Cao Q
    Med Phys; 2022 Jun; 49(6):3845-3859. PubMed ID: 35322430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FMD-UNet: fine-grained feature squeeze and multiscale cascade dilated semantic aggregation dual-decoder UNet for COVID-19 lung infection segmentation from CT images.
    Wang W; Mao Q; Tian Y; Zhang Y; Xiang Z; Ren L
    Biomed Phys Eng Express; 2024 Aug; 10(5):. PubMed ID: 39142295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Effective Semi-Supervised Approach for Liver CT Image Segmentation.
    Han K; Liu L; Song Y; Liu Y; Qiu C; Tang Y; Teng Q; Liu Z
    IEEE J Biomed Health Inform; 2022 Aug; 26(8):3999-4007. PubMed ID: 35420991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-supervised abdominal multi-organ segmentation by object-redrawing.
    Cho MJ; Lee JS
    Med Phys; 2024 Nov; 51(11):8334-8347. PubMed ID: 39167059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semi-supervised CT image segmentation via contrastive learning based on entropy constraints.
    Xiao Z; Sun H; Liu F
    Biomed Eng Lett; 2024 Sep; 14(5):1023-1035. PubMed ID: 39220023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency.
    Luo X; Wang G; Liao W; Chen J; Song T; Chen Y; Zhang S; Metaxas DN; Zhang S
    Med Image Anal; 2022 Aug; 80():102517. PubMed ID: 35732106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.