These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 39133935)
1. Deep learning models for separate segmentations of intracerebral and intraventricular hemorrhage on head CT and segmentation quality assessment. Li Y; Zhang R; Li Y; Zuo X; Wang Q; Zhang S; Huo X; Liu Z; Zhang Q; Liang M Med Phys; 2024 Nov; 51(11):8317-8333. PubMed ID: 39133935 [TBL] [Abstract][Full Text] [Related]
2. Deep learning shows good reliability for automatic segmentation and volume measurement of brain hemorrhage, intraventricular extension, and peripheral edema. Zhao X; Chen K; Wu G; Zhang G; Zhou X; Lv C; Wu S; Chen Y; Xie G; Yao Z Eur Radiol; 2021 Jul; 31(7):5012-5020. PubMed ID: 33409788 [TBL] [Abstract][Full Text] [Related]
3. Efficiency of a deep learning-based artificial intelligence diagnostic system in spontaneous intracerebral hemorrhage volume measurement. Wang T; Song N; Liu L; Zhu Z; Chen B; Yang W; Chen Z BMC Med Imaging; 2021 Aug; 21(1):125. PubMed ID: 34388981 [TBL] [Abstract][Full Text] [Related]
4. A Robust Deep Learning Segmentation Method for Hematoma Volumetric Detection in Intracerebral Hemorrhage. Yu N; Yu H; Li H; Ma N; Hu C; Wang J Stroke; 2022 Jan; 53(1):167-176. PubMed ID: 34601899 [TBL] [Abstract][Full Text] [Related]
5. Semantic Segmentation of Spontaneous Intracerebral Hemorrhage, Intraventricular Hemorrhage, and Associated Edema on CT Images Using Deep Learning. Kok YE; Pszczolkowski S; Law ZK; Ali A; Krishnan K; Bath PM; Sprigg N; Dineen RA; French AP Radiol Artif Intell; 2022 Nov; 4(6):e220096. PubMed ID: 36523645 [TBL] [Abstract][Full Text] [Related]
6. Deep-learning measurement of intracerebral haemorrhage with mixed precision training: a coarse-to-fine study. Jiang X; Wang S; Zheng Q Clin Radiol; 2023 Apr; 78(4):e328-e335. PubMed ID: 36746725 [TBL] [Abstract][Full Text] [Related]
9. Multilesion Segmentations in Patients with Intracerebral Hemorrhage: Reliability of ICH, IVH and PHE Masks. Vogt E; Vu LH; Cao H; Speth A; Desser D; Schlunk F; Dell'Orco A; Nawabi J Tomography; 2023 Jan; 9(1):89-97. PubMed ID: 36648995 [TBL] [Abstract][Full Text] [Related]
10. 3D Deep Neural Network Segmentation of Intracerebral Hemorrhage: Development and Validation for Clinical Trials. Sharrock MF; Mould WA; Ali H; Hildreth M; Awad IA; Hanley DF; Muschelli J Neuroinformatics; 2021 Jul; 19(3):403-415. PubMed ID: 32980970 [TBL] [Abstract][Full Text] [Related]
11. CT-based deep learning model for predicting hospital discharge outcome in spontaneous intracerebral hemorrhage. Zhao X; Zhou B; Luo Y; Chen L; Zhu L; Chang S; Fang X; Yao Z Eur Radiol; 2024 Jul; 34(7):4417-4426. PubMed ID: 38127074 [TBL] [Abstract][Full Text] [Related]
12. A symmetric prior knowledge based deep learning model for intracerebral hemorrhage lesion segmentation. Nijiati M; Tuersun A; Zhang Y; Yuan Q; Gong P; Abulizi A; Tuoheti A; Abulaiti A; Zou X Front Physiol; 2022; 13():977427. PubMed ID: 36505076 [No Abstract] [Full Text] [Related]
13. Development and Validation of an Automatic Segmentation Algorithm for Quantification of Intracerebral Hemorrhage. Scherer M; Cordes J; Younsi A; Sahin YA; Götz M; Möhlenbruch M; Stock C; Bösel J; Unterberg A; Maier-Hein K; Orakcioglu B Stroke; 2016 Nov; 47(11):2776-2782. PubMed ID: 27703089 [TBL] [Abstract][Full Text] [Related]
14. Multi-scale object equalization learning network for intracerebral hemorrhage region segmentation. Zhang Y; Huang Y; Hu K Neural Netw; 2024 Nov; 179():106507. PubMed ID: 39003984 [TBL] [Abstract][Full Text] [Related]
15. PItcHPERFeCT: Primary Intracranial Hemorrhage Probability Estimation using Random Forests on CT. Muschelli J; Sweeney EM; Ullman NL; Vespa P; Hanley DF; Crainiceanu CM Neuroimage Clin; 2017; 14():379-390. PubMed ID: 28275541 [TBL] [Abstract][Full Text] [Related]
17. White Matter Lesion Severity is Associated with Intraventricular Hemorrhage in Spontaneous Intracerebral Hemorrhage. Vagal V; Venema SU; Behymer TP; Mistry EA; Sekar P; Sawyer RP; Gilkerson L; Moomaw CJ; Haverbusch M; Coleman ER; Flaherty ML; Van Sanford C; Stanton RJ; Anderson C; Rosand J; Woo D J Stroke Cerebrovasc Dis; 2020 May; 29(5):104661. PubMed ID: 32122778 [TBL] [Abstract][Full Text] [Related]
18. Hybrid clinical-radiomics model based on fully automatic segmentation for predicting the early expansion of spontaneous intracerebral hemorrhage: A multi-center study. Wang M; Liang Y; Li H; Chen J; Fu H; Wang X; Xie Y J Stroke Cerebrovasc Dis; 2024 Nov; 33(11):107979. PubMed ID: 39222703 [TBL] [Abstract][Full Text] [Related]
19. Accuracy of automated segmentation and volumetry of acute intracerebral hemorrhage following minimally invasive surgery using a patch-based convolutional neural network in a small dataset. Elsheikh S; Elbaz A; Rau A; Demerath T; Fung C; Kellner E; Urbach H; Reisert M Neuroradiology; 2024 Apr; 66(4):601-608. PubMed ID: 38367095 [TBL] [Abstract][Full Text] [Related]
20. Deep learning-based computed tomography image segmentation and volume measurement of intracerebral hemorrhage. Peng Q; Chen X; Zhang C; Li W; Liu J; Shi T; Wu Y; Feng H; Nian Y; Hu R Front Neurosci; 2022; 16():965680. PubMed ID: 36263364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]