These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 39134188)
101. Potent antitumor activity of anti-HER2 antibody-topoisomerase I inhibitor conjugate based on self-immolative dendritic dimeric-linker. Liubomirski Y; Tiram G; Scomparin A; Gnaim S; Das S; Gholap S; Ge L; Yeini E; Shelef O; Zauberman A; Berger N; Kalimi D; Toister-Achituv M; Schröter C; Dickgiesser S; Tonillo J; Shan M; Deutsch C; Sweeney-Lasch S; Shabat D; Satchi-Fainaro R J Control Release; 2024 Mar; 367():148-157. PubMed ID: 38228272 [TBL] [Abstract][Full Text] [Related]
102. Advances in targeted therapy for pancreatic cancer. Xing L; Lv L; Ren J; Yu H; Zhao X; Kong X; Xiang H; Tao X; Dong D Biomed Pharmacother; 2023 Dec; 168():115717. PubMed ID: 37862965 [TBL] [Abstract][Full Text] [Related]
103. Pharmacokinetic Considerations for Antibody-Drug Conjugates against Cancer. Malik P; Phipps C; Edginton A; Blay J Pharm Res; 2017 Dec; 34(12):2579-2595. PubMed ID: 28924691 [TBL] [Abstract][Full Text] [Related]
104. Exploring the effects of linker composition on site-specifically modified antibody-drug conjugates. Albers AE; Garofalo AW; Drake PM; Kudirka R; de Hart GW; Barfield RM; Baker J; Banas S; Rabuka D Eur J Med Chem; 2014 Dec; 88():3-9. PubMed ID: 25176286 [TBL] [Abstract][Full Text] [Related]
105. Drug Conjugation via Maleimide-Thiol Chemistry Does Not Affect Targeting Properties of Cysteine-Containing Anti-FGFR1 Peptibodies. Jendryczko K; Rzeszotko J; Krzyscik MA; Kocyła A; Szymczyk J; Otlewski J; Szlachcic A Mol Pharm; 2022 May; 19(5):1422-1433. PubMed ID: 35389227 [TBL] [Abstract][Full Text] [Related]
106. Beyond cytotoxic potency: disposition features required to design ADC payload. Sun H; Wienkers LC; Lee A Xenobiotica; 2024 Aug; 54(8):442-457. PubMed ID: 39017706 [TBL] [Abstract][Full Text] [Related]
107. Use of a Cyclic α-Alkylidene-β-Diketone as a Cleavable Linker Strategy for Antibody-Drug Conjugates. Tong JTW; Sarwar M; Ahangarpour M; Hume PA; Williams GM; Brimble MA; Kavianinia I J Am Chem Soc; 2024 Aug; 146(34):23717-23728. PubMed ID: 39143910 [TBL] [Abstract][Full Text] [Related]
108. Antibody-drug conjugates for lymphoma patients: preclinical and clinical evidences. Barreca M; Lang N; Tarantelli C; Spriano F; Barraja P; Bertoni F Explor Target Antitumor Ther; 2022; 3(6):763-794. PubMed ID: 36654819 [TBL] [Abstract][Full Text] [Related]
109. Antibody-Drug Conjugates: A Review of Approved Drugs and Their Clinical Level of Evidence. Gogia P; Ashraf H; Bhasin S; Xu Y Cancers (Basel); 2023 Jul; 15(15):. PubMed ID: 37568702 [TBL] [Abstract][Full Text] [Related]
110. Advancing Tumor-Targeted Chemo-Immunotherapy: Development of the CAR-M-derived Exosome-Drug Conjugate. Jiang Y; Xu X; Fan D; Liu P; Zhou M; Cheng M; Huang J; Luo Y; Guo Y; Yang T J Med Chem; 2024 Aug; 67(16):13959-13974. PubMed ID: 39041307 [TBL] [Abstract][Full Text] [Related]
111. DNA damaging agent-based antibody-drug conjugates for cancer therapy. Fu Y; Ho M Antib Ther; 2018 Sep; 1(2):33-43. PubMed ID: 30294716 [TBL] [Abstract][Full Text] [Related]
112. Antibody-drug conjugates in breast cancer: overcoming resistance and boosting immune response. Chang HL; Schwettmann B; McArthur HL; Chan IS J Clin Invest; 2023 Sep; 133(18):. PubMed ID: 37712425 [TBL] [Abstract][Full Text] [Related]
113. Expanding the repertoire of Antibody Drug Conjugate (ADC) targets with improved tumor selectivity and range of potent payloads through in-silico analysis. Kathad U; Biyani N; Peru Y Colón De Portugal RL; Zhou J; Kochat H; Bhatia K PLoS One; 2024; 19(8):e0308604. PubMed ID: 39186767 [TBL] [Abstract][Full Text] [Related]
114. Peripheral neuropathy associated with monomethyl auristatin E-based antibody-drug conjugates. Fu Z; Gao C; Wu T; Wang L; Li S; Zhang Y; Shi C iScience; 2023 Oct; 26(10):107778. PubMed ID: 37727735 [TBL] [Abstract][Full Text] [Related]
115. Antibody-Drug Conjugates: Functional Principles and Applications in Oncology and Beyond. Theocharopoulos C; Lialios PP; Samarkos M; Gogas H; Ziogas DC Vaccines (Basel); 2021 Sep; 9(10):. PubMed ID: 34696218 [TBL] [Abstract][Full Text] [Related]
116. The Landscape of Nucleic-Acid-Based Aptamers for Treatment of Hematologic Malignancies: Challenges and Future Directions. Wang SC; Yan XY; Yang C; Naranmandura H Bioengineering (Basel); 2022 Nov; 9(11):. PubMed ID: 36354547 [TBL] [Abstract][Full Text] [Related]
117. Peptide-Drug Conjugates: A New Hope for Cancer Management. Chavda VP; Solanki HK; Davidson M; Apostolopoulos V; Bojarska J Molecules; 2022 Oct; 27(21):. PubMed ID: 36364057 [TBL] [Abstract][Full Text] [Related]
118. Clinical strategies with antibody-drug conjugates as potential modifications for virotherapy. Liao ZX; Huang PH; Hsu SH; Chang HH; Chang CH; Tseng SJ Drug Discov Today; 2024 Nov; 29(11):104165. PubMed ID: 39270970 [TBL] [Abstract][Full Text] [Related]
119. Antibody-peptide conjugates deliver covalent inhibitors blocking oncogenic cathepsins. Petruzzella A; Bruand M; Santamaria-Martínez A; Katanayeva N; Reymond L; Wehrle S; Georgeon S; Inel D; van Dalen FJ; Viertl D; Lau K; Pojer F; Schottelius M; Zoete V; Verdoes M; Arber C; Correia BE; Oricchio E Nat Chem Biol; 2024 Sep; 20(9):1188-1198. PubMed ID: 38811854 [TBL] [Abstract][Full Text] [Related]
120. Engineering peptide drug therapeutics through chemical conjugation and implication in clinics. Rizvi SFA; Zhang H; Fang Q Med Res Rev; 2024 Nov; 44(6):2420-2471. PubMed ID: 38704826 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]