These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 39134290)
1. Controlled preparation of curcumin nanocrystals by detachable stainless steel microfluidic chip. Zheng X; Zhang J; Zhang L; Huangfu X; Li Y; Chen J Int J Pharm; 2024 Sep; 663():124574. PubMed ID: 39134290 [TBL] [Abstract][Full Text] [Related]
2. Enhanced Dissolution and Bioavailability of Curcumin Nanocrystals Prepared by Hot Melt Extrusion Technology. Zhao Y; Xu X; Dai A; Jia Y; Wang W Int J Nanomedicine; 2024; 19():5721-5737. PubMed ID: 38895153 [TBL] [Abstract][Full Text] [Related]
3. Improved oral bioavailability for lutein by nanocrystal technology: formulation development, in vitro and in vivo evaluation. Chang D; Ma Y; Cao G; Wang J; Zhang X; Feng J; Wang W Artif Cells Nanomed Biotechnol; 2018 Aug; 46(5):1018-1024. PubMed ID: 28749189 [TBL] [Abstract][Full Text] [Related]
4. The Use of an Efficient Microfluidic Mixing System for Generating Stabilized Polymeric Nanoparticles for Controlled Drug Release. Morikawa Y; Tagami T; Hoshikawa A; Ozeki T Biol Pharm Bull; 2018; 41(6):899-907. PubMed ID: 29863078 [TBL] [Abstract][Full Text] [Related]
5. Curcumin-loaded solid lipid nanoparticles with Brij78 and TPGS improved in vivo oral bioavailability and in situ intestinal absorption of curcumin. Ji H; Tang J; Li M; Ren J; Zheng N; Wu L Drug Deliv; 2016; 23(2):459-70. PubMed ID: 24892628 [TBL] [Abstract][Full Text] [Related]
6. Therapeutic effects of curcumin liposomes and nanocrystals on inflammatory osteolysis: In vitro and in vivo comparative study. Huang S; Xu D; Zhang L; Hao L; Jia Y; Zhang X; Cheng T; Chen J Pharmacol Res; 2023 Jun; 192():106778. PubMed ID: 37094714 [TBL] [Abstract][Full Text] [Related]
7. Nanonization of curcumin by antisolvent precipitation: process development, characterization, freeze drying and stability performance. Yadav D; Kumar N Int J Pharm; 2014 Dec; 477(1-2):564-77. PubMed ID: 25445971 [TBL] [Abstract][Full Text] [Related]
8. Size effect of curcumin nanocrystals on dissolution, airway mucosa penetration, lung tissue distribution and absorption by pulmonary delivery. He Y; Liang Y; Mak JCW; Liao Y; Li T; Yan R; Li HF; Zheng Y Colloids Surf B Biointerfaces; 2020 Feb; 186():110703. PubMed ID: 31835185 [TBL] [Abstract][Full Text] [Related]
9. Manufacturing of 3D-Printed Microfluidic Devices for the Synthesis of Drug-Loaded Liposomal Formulations. Ballacchino G; Weaver E; Mathew E; Dorati R; Genta I; Conti B; Lamprou DA Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360832 [TBL] [Abstract][Full Text] [Related]
10. Quercetin nanocrystals prepared using a microfluidic chip with improved in vitro dissolution. Zheng G; Wu W; Liu Z; Lv Y; Luo Y; Che X; Wang L Pharm Dev Technol; 2024 Mar; 29(3):143-152. PubMed ID: 38353125 [TBL] [Abstract][Full Text] [Related]
11. Robust Microfluidic Technology and New Lipid Composition for Fabrication of Curcumin-Loaded Liposomes: Effect on the Anticancer Activity and Safety of Cisplatin. Hamano N; Böttger R; Lee SE; Yang Y; Kulkarni JA; Ip S; Cullis PR; Li SD Mol Pharm; 2019 Sep; 16(9):3957-3967. PubMed ID: 31381352 [TBL] [Abstract][Full Text] [Related]
12. Continuous production of aqueous suspensions of ultra-fine particles of curcumin using ultrasonically driven mixing device. Pandey K; Chatte A; Dalvi S Pharm Dev Technol; 2018 Jul; 23(6):608-619. PubMed ID: 28368746 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of solubility, antioxidant ability and bioavailability of taxifolin nanoparticles by liquid antisolvent precipitation technique. Zu Y; Wu W; Zhao X; Li Y; Wang W; Zhong C; Zhang Y; Zhao X Int J Pharm; 2014 Aug; 471(1-2):366-76. PubMed ID: 24882039 [TBL] [Abstract][Full Text] [Related]
14. Leveraging 3D-printed microfluidic micromixers for the continuous manufacture of melatonin loaded SNEDDS with enhanced antioxidant activity and skin permeability. Ongoren B; Kara A; Casettari L; Tiboni M; Lalatsa A; Sanz-Perez A; Gonzalez-Burgos E; Romero A; Juberías A; Torrado JJ; Serrano DR Int J Pharm; 2024 Sep; 663():124536. PubMed ID: 39074648 [TBL] [Abstract][Full Text] [Related]
15. Optimization and scale up of microfluidic nanolipomer production method for preclinical and potential clinical trials. Gdowski A; Johnson K; Shah S; Gryczynski I; Vishwanatha J; Ranjan A J Nanobiotechnology; 2018 Feb; 16(1):12. PubMed ID: 29433518 [TBL] [Abstract][Full Text] [Related]
16. Curcumin nanoparticles containing poloxamer or soluplus tailored by high pressure homogenization using antisolvent crystallization. Homayouni A; Amini M; Sohrabi M; Varshosaz J; Nokhodchi A Int J Pharm; 2019 May; 562():124-134. PubMed ID: 30898640 [TBL] [Abstract][Full Text] [Related]
17. Development of surface stabilized candesartan cilexetil nanocrystals with enhanced dissolution rate, permeation rate across CaCo-2, and oral bioavailability. Jain S; Reddy VA; Arora S; Patel K Drug Deliv Transl Res; 2016 Oct; 6(5):498-510. PubMed ID: 27129488 [TBL] [Abstract][Full Text] [Related]
18. Microfluidic-controlled manufacture of liposomes for the solubilisation of a poorly water soluble drug. Kastner E; Verma V; Lowry D; Perrie Y Int J Pharm; 2015 May; 485(1-2):122-30. PubMed ID: 25725309 [TBL] [Abstract][Full Text] [Related]
19. Preparation of Tetrandrine Nanocrystals by Microfluidic Method and Its In Vitro and In Vivo Evaluation. Huang J; Huang S; Liu S; Feng L; Huang W; Wang Y; Huang D; Huang T; Huang X AAPS PharmSciTech; 2023 Dec; 25(1):4. PubMed ID: 38114843 [TBL] [Abstract][Full Text] [Related]
20. Preparation and in vitro/in vivo evaluation of fenofibrate nanocrystals. Zuo B; Sun Y; Li H; Liu X; Zhai Y; Sun J; He Z Int J Pharm; 2013 Oct; 455(1-2):267-75. PubMed ID: 23876497 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]