These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 39134384)

  • 1. Real-world evaluation of RetCAD deep-learning system for the detection of referable diabetic retinopathy and age-related macular degeneration.
    Taylor JR; Drinkwater J; Sousa DC; Shah V; Turner AW
    Clin Exp Optom; 2024 Aug; ():1-6. PubMed ID: 39134384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a deep learning system for the joint automated detection of diabetic retinopathy and age-related macular degeneration.
    González-Gonzalo C; Sánchez-Gutiérrez V; Hernández-Martínez P; Contreras I; Lechanteur YT; Domanian A; van Ginneken B; Sánchez CI
    Acta Ophthalmol; 2020 Jun; 98(4):368-377. PubMed ID: 31773912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous screening and classification of diabetic retinopathy and age-related macular degeneration based on fundus photos-a prospective analysis of the RetCAD system.
    Skevas C; Weindler H; Levering M; Engelberts J; van Grinsven M; Katz T
    Int J Ophthalmol; 2022; 15(12):1985-1993. PubMed ID: 36536981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study.
    Bellemo V; Lim ZW; Lim G; Nguyen QD; Xie Y; Yip MYT; Hamzah H; Ho J; Lee XQ; Hsu W; Lee ML; Musonda L; Chandran M; Chipalo-Mutati G; Muma M; Tan GSW; Sivaprasad S; Menon G; Wong TY; Ting DSW
    Lancet Digit Health; 2019 May; 1(1):e35-e44. PubMed ID: 33323239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes.
    Ting DSW; Cheung CY; Lim G; Tan GSW; Quang ND; Gan A; Hamzah H; Garcia-Franco R; San Yeo IY; Lee SY; Wong EYM; Sabanayagam C; Baskaran M; Ibrahim F; Tan NC; Finkelstein EA; Lamoureux EL; Wong IY; Bressler NM; Sivaprasad S; Varma R; Jonas JB; He MG; Cheng CY; Cheung GCM; Aung T; Hsu W; Lee ML; Wong TY
    JAMA; 2017 Dec; 318(22):2211-2223. PubMed ID: 29234807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diabetic retinopathy screening with confocal fundus camera and artificial intelligence - assisted grading.
    Piatti A; Rui C; Gazzina S; Tartaglino B; Romeo F; Manti R; Doglio M; Nada E; Giorda CB
    Eur J Ophthalmol; 2024 Aug; ():11206721241272229. PubMed ID: 39109554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined automated screening for age-related macular degeneration and diabetic retinopathy in primary care settings.
    Bhuiyan A; Govindaiah A; Alauddin S; Otero-Marquez O; Smith RT
    Ann Eye Sci; 2021 Jun; 6():. PubMed ID: 34671718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Empowering Portable Age-Related Macular Degeneration Screening: Evaluation of a Deep Learning Algorithm for a Smartphone Fundus Camera.
    Savoy FM; Rao DP; Toh JK; Ong B; Sivaraman A; Sharma A; Das T
    BMJ Open; 2024 Sep; 14(9):e081398. PubMed ID: 39237272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using deep leaning models to detect ophthalmic diseases: A comparative study.
    Li Z; Guo X; Zhang J; Liu X; Chang R; He M
    Front Med (Lausanne); 2023; 10():1115032. PubMed ID: 36936225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Automated Grading System for Detection of Vision-Threatening Referable Diabetic Retinopathy on the Basis of Color Fundus Photographs.
    Li Z; Keel S; Liu C; He Y; Meng W; Scheetz J; Lee PY; Shaw J; Ting D; Wong TY; Taylor H; Chang R; He M
    Diabetes Care; 2018 Dec; 41(12):2509-2516. PubMed ID: 30275284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated multidimensional deep learning platform for referable diabetic retinopathy detection: a multicentre, retrospective study.
    Zhang G; Lin JW; Wang J; Ji J; Cen LP; Chen W; Xie P; Zheng Y; Xiong Y; Wu H; Li D; Ng TK; Pang CP; Zhang M
    BMJ Open; 2022 Jul; 12(7):e060155. PubMed ID: 35902186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.
    Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR
    JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of an Anomaly Detection Model to Screen for Ocular Diseases Using Color Retinal Fundus Images: Design and Evaluation Study.
    Han Y; Li W; Liu M; Wu Z; Zhang F; Liu X; Tao L; Li X; Guo X
    J Med Internet Res; 2021 Jul; 23(7):e27822. PubMed ID: 34255681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated analysis of retinal images for detection of referable diabetic retinopathy.
    Abràmoff MD; Folk JC; Han DP; Walker JD; Williams DF; Russell SR; Massin P; Cochener B; Gain P; Tang L; Lamard M; Moga DC; Quellec G; Niemeijer M
    JAMA Ophthalmol; 2013 Mar; 131(3):351-7. PubMed ID: 23494039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and validation of a deep-learning algorithm for the detection of neovascular age-related macular degeneration from colour fundus photographs.
    Keel S; Li Z; Scheetz J; Robman L; Phung J; Makeyeva G; Aung K; Liu C; Yan X; Meng W; Guymer R; Chang R; He M
    Clin Exp Ophthalmol; 2019 Nov; 47(8):1009-1018. PubMed ID: 31215760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy - Artificial intelligence versus clinician for screening.
    Shah P; Mishra DK; Shanmugam MP; Doshi B; Jayaraj H; Ramanjulu R
    Indian J Ophthalmol; 2020 Feb; 68(2):398-405. PubMed ID: 31957737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of Deep Generative Models for High-Resolution Synthetic Retinal Image Generation of Age-Related Macular Degeneration.
    Burlina PM; Joshi N; Pacheco KD; Liu TYA; Bressler NM
    JAMA Ophthalmol; 2019 Mar; 137(3):258-264. PubMed ID: 30629091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variability in Grading Diabetic Retinopathy Using Retinal Photography and Its Comparison with an Automated Deep Learning Diabetic Retinopathy Screening Software.
    Teoh CS; Wong KH; Xiao D; Wong HC; Zhao P; Chan HW; Yuen YS; Naing T; Yogesan K; Koh VTC
    Healthcare (Basel); 2023 Jun; 11(12):. PubMed ID: 37372815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpretable Detection of Diabetic Retinopathy, Retinal Vein Occlusion, Age-Related Macular Degeneration, and Other Fundus Conditions.
    Li W; Bian L; Ma B; Sun T; Liu Y; Sun Z; Zhao L; Feng K; Yang F; Wang X; Chan S; Dou H; Qi H
    Diagnostics (Basel); 2024 Jan; 14(2):. PubMed ID: 38247998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-based detection and stage grading for optimising diagnosis of diabetic retinopathy.
    Wang Y; Yu M; Hu B; Jin X; Li Y; Zhang X; Zhang Y; Gong D; Wu C; Zhang B; Yang J; Li B; Yuan M; Mo B; Wei Q; Zhao J; Ding D; Yang J; Li X; Yu W; Chen Y
    Diabetes Metab Res Rev; 2021 May; 37(4):e3445. PubMed ID: 33713564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.