These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. More Zernike modes' open-loop measurement in the sub-aperture of the Shack-Hartmann wavefront sensor. Zhu Z; Mu Q; Li D; Yang C; Cao Z; Hu L; Xuan L Opt Express; 2016 Oct; 24(21):24611-24623. PubMed ID: 27828187 [TBL] [Abstract][Full Text] [Related]
23. Iterative wavefront reconstruction for strong turbulence using Shack-Hartmann wavefront sensor measurements. Kim JJ; Fernandez B; Agrawal B J Opt Soc Am A Opt Image Sci Vis; 2021 Mar; 38(3):456-464. PubMed ID: 33690478 [TBL] [Abstract][Full Text] [Related]
24. Large-Dynamic-Range Ocular Aberration Measurement Based on Deep Learning with a Shack-Hartmann Wavefront Sensor. Zhang H; Zhao J; Chen H; Zhang Z; Yin C; Wang S Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732834 [TBL] [Abstract][Full Text] [Related]
25. C(n)(2) profile measurement from Shack-Hartmann data. Védrenne N; Michau V; Robert C; Conan JM Opt Lett; 2007 Sep; 32(18):2659-61. PubMed ID: 17873926 [TBL] [Abstract][Full Text] [Related]
26. Phase retrieval using a modified Shack-Hartmann wavefront sensor with defocus. Li C; Li B; Zhang S Appl Opt; 2014 Feb; 53(4):618-24. PubMed ID: 24514178 [TBL] [Abstract][Full Text] [Related]
27. Implementing a non-4f relay system for Hartmann-Shack wavefront sensing. Börjeson C; Romashchenko D; Unsbo P; Lundström L J Opt Soc Am A Opt Image Sci Vis; 2023 Jun; 40(6):D1-D6. PubMed ID: 37706753 [TBL] [Abstract][Full Text] [Related]
29. The range of local wavefront curvatures measurable with Shack-Hartmann wavefront sensors. Campbell CE Clin Exp Optom; 2009 May; 92(3):187-93. PubMed ID: 19462501 [TBL] [Abstract][Full Text] [Related]
30. Wavefront sensor and wavefront corrector matching in adaptive optics. Dubra A Opt Express; 2007 Mar; 15(6):2762-9. PubMed ID: 19532513 [TBL] [Abstract][Full Text] [Related]
31. Wave-front sensing from subdivision of the focal plane with a lenslet array. Clare RM; Lane RG J Opt Soc Am A Opt Image Sci Vis; 2005 Jan; 22(1):117-25. PubMed ID: 15669622 [TBL] [Abstract][Full Text] [Related]
32. Large dynamic range autorefraction with a low-cost diffuser wavefront sensor. McKay GN; Mahmood F; Durr NJ Biomed Opt Express; 2019 Apr; 10(4):1718-1735. PubMed ID: 31061764 [TBL] [Abstract][Full Text] [Related]
35. Improving the system stability of a digital Shack-Hartmann wavefront sensor with a special lenslet array. Zhao LP; Bai N; Li X; Fang ZP; Zhong ZW; Hein AA Appl Opt; 2009 Jan; 48(1):A71-4. PubMed ID: 19107158 [TBL] [Abstract][Full Text] [Related]
36. Impact of CMOS Pixel and Electronic Circuitry in the Performance of a Hartmann-Shack Wavefront Sensor. Abecassis ÚV; de Lima Monteiro DW; Salles LP; de Moraes Cruz CA; Agra Belmonte PN Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30274297 [TBL] [Abstract][Full Text] [Related]
38. Shack-Hartmann wavefront sensor with large dynamic range. Xia M; Li C; Hu L; Cao Z; Mu Q; Xuan L J Biomed Opt; 2010; 15(2):026009. PubMed ID: 20459254 [TBL] [Abstract][Full Text] [Related]
39. Deep learning wavefront sensing method for Shack-Hartmann sensors with sparse sub-apertures. He Y; Liu Z; Ning Y; Li J; Xu X; Jiang Z Opt Express; 2021 May; 29(11):17669-17682. PubMed ID: 34154303 [TBL] [Abstract][Full Text] [Related]
40. Wavefront reconstruction of a Shack-Hartmann sensor with insufficient lenslets based on an extreme learning machine. Xu Z; Wang S; Zhao M; Zhao W; Dong L; He X; Yang P; Xu B Appl Opt; 2020 Jun; 59(16):4768-4774. PubMed ID: 32543468 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]