These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 39134518)

  • 41. Shack-Hartmann wavefront sensing using spatial-temporal data from an event-based image sensor.
    Kong F; Lambert A; Joubert D; Cohen G
    Opt Express; 2020 Nov; 28(24):36159-36175. PubMed ID: 33379717
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Measuring the centroid gain of a Shack-Hartmann quad-cell wavefront sensor by using slope discrepancy.
    van Dam MA
    J Opt Soc Am A Opt Image Sci Vis; 2005 Aug; 22(8):1509-14. PubMed ID: 16134845
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of a global algorithm for wavefront reconstruction for Shack-Hartmann wave-front sensors and thick fundus reflectors.
    Liu T; Thibos L; Marin G; Hernandez M
    Ophthalmic Physiol Opt; 2014 Jan; 34(1):63-72. PubMed ID: 24325435
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Centroid distortion of a wavefront with varying amplitude due to asymmetry in lens diffraction.
    Carmon Y; Ribak EN
    J Opt Soc Am A Opt Image Sci Vis; 2009 Jan; 26(1):85-90. PubMed ID: 19109604
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Visible pyramid wavefront sensing approach for daylight adaptive optics.
    Huang L; Wang J; Chen L; Yuan H; Li H; Yao K
    Opt Express; 2022 Mar; 30(7):10833-10849. PubMed ID: 35473041
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Method Used to Improve the Dynamic Range of Shack-Hartmann Wavefront Sensor in Presence of Large Aberration.
    Yang W; Wang J; Wang B
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236217
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mid-infrared Shack-Hartmann wavefront sensor fully cryogenic using extended source for endoatmospheric applications.
    Robert C; Michau V; Fleury B; Magli S; Vial L
    Opt Express; 2012 Jul; 20(14):15636-53. PubMed ID: 22772257
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High precision wavefront correction using an influence function optimization method based on a hybrid adaptive optics system.
    Zheng Y; Sun C; Dai W; Zeng F; Xue Q; Wang D; Zhao W; Huang L
    Opt Express; 2019 Nov; 27(24):34937-34951. PubMed ID: 31878672
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modeling classical wavefront sensors.
    Wang C; Fu Q; Dun X; Heidrich W
    Opt Express; 2020 Feb; 28(4):5273-5287. PubMed ID: 32121752
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Centroid computation for Shack-Hartmann wavefront sensor in extreme situations based on artificial neural networks.
    Li Z; Li X
    Opt Express; 2018 Nov; 26(24):31675-31692. PubMed ID: 30650751
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Highly Sensitive Shack-Hartmann Wavefront Sensor: Application to Non-Transparent Tissue Mimic Imaging with Adaptive Light-Sheet Fluorescence Microscopy.
    Morgado Brajones J; Clouvel G; Dovillaire G; Levecq X; Lorenzo C
    Methods Protoc; 2019 Jul; 2(3):. PubMed ID: 31336779
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adaptive optics system for a short wavelength mid-IR laser based on a Shack-Hartmann wavefront sensor and analysis of thermal noise impacts.
    Zhou H; Pilar J; Smrz M; Chen L; Čech M; Mocek T
    Appl Opt; 2022 Sep; 61(27):7958-7965. PubMed ID: 36255916
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Extended-aperture Hartmann wavefront sensor with raster scanning.
    Xu H; Wu J
    Opt Express; 2021 Oct; 29(21):34229-34242. PubMed ID: 34809218
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Differential Shack-Hartmann curvature sensor: local principal curvature measurements.
    Zou W; Thompson KP; Rolland JP
    J Opt Soc Am A Opt Image Sci Vis; 2008 Sep; 25(9):2331-7. PubMed ID: 18758561
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes.
    Yoon G; Pantanelli S; Nagy LJ
    J Biomed Opt; 2006; 11(3):30502. PubMed ID: 16822048
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Accounting for focal shift in the Shack-Hartmann wavefront sensor.
    Akondi V; Dubra A
    Opt Lett; 2019 Sep; 44(17):4151-4154. PubMed ID: 31465350
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Error propagation: a comparison of Shack-Hartmann and curvature sensors.
    Kellerer AN; Kellerer AM
    J Opt Soc Am A Opt Image Sci Vis; 2011 May; 28(5):801-7. PubMed ID: 21532691
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced-resolution Shack-Hartmann wavefront sensing for extended objects.
    Wu X; Huang L; Gu N
    Opt Lett; 2023 Nov; 48(21):5691-5694. PubMed ID: 37910735
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Shack-Hartmann versus reverse Hartmann wavefront sensors: experimental results.
    Pannetier C; Hénault F
    Opt Lett; 2020 Apr; 45(7):1746-1749. PubMed ID: 32235989
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improving centroiding by super-resolution reconstruction of sodium layer density in Shack-Hartmann wavefront sensors.
    Mello AJ; Pipa DR
    Appl Opt; 2016 May; 55(14):3701-10. PubMed ID: 27168279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.