These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 39134518)
41. Shack-Hartmann wavefront sensing using spatial-temporal data from an event-based image sensor. Kong F; Lambert A; Joubert D; Cohen G Opt Express; 2020 Nov; 28(24):36159-36175. PubMed ID: 33379717 [TBL] [Abstract][Full Text] [Related]
42. Measuring the centroid gain of a Shack-Hartmann quad-cell wavefront sensor by using slope discrepancy. van Dam MA J Opt Soc Am A Opt Image Sci Vis; 2005 Aug; 22(8):1509-14. PubMed ID: 16134845 [TBL] [Abstract][Full Text] [Related]
43. Evaluation of a global algorithm for wavefront reconstruction for Shack-Hartmann wave-front sensors and thick fundus reflectors. Liu T; Thibos L; Marin G; Hernandez M Ophthalmic Physiol Opt; 2014 Jan; 34(1):63-72. PubMed ID: 24325435 [TBL] [Abstract][Full Text] [Related]
44. Centroid distortion of a wavefront with varying amplitude due to asymmetry in lens diffraction. Carmon Y; Ribak EN J Opt Soc Am A Opt Image Sci Vis; 2009 Jan; 26(1):85-90. PubMed ID: 19109604 [TBL] [Abstract][Full Text] [Related]
45. Visible pyramid wavefront sensing approach for daylight adaptive optics. Huang L; Wang J; Chen L; Yuan H; Li H; Yao K Opt Express; 2022 Mar; 30(7):10833-10849. PubMed ID: 35473041 [TBL] [Abstract][Full Text] [Related]
46. A Method Used to Improve the Dynamic Range of Shack-Hartmann Wavefront Sensor in Presence of Large Aberration. Yang W; Wang J; Wang B Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236217 [TBL] [Abstract][Full Text] [Related]
47. Mid-infrared Shack-Hartmann wavefront sensor fully cryogenic using extended source for endoatmospheric applications. Robert C; Michau V; Fleury B; Magli S; Vial L Opt Express; 2012 Jul; 20(14):15636-53. PubMed ID: 22772257 [TBL] [Abstract][Full Text] [Related]
48. High precision wavefront correction using an influence function optimization method based on a hybrid adaptive optics system. Zheng Y; Sun C; Dai W; Zeng F; Xue Q; Wang D; Zhao W; Huang L Opt Express; 2019 Nov; 27(24):34937-34951. PubMed ID: 31878672 [TBL] [Abstract][Full Text] [Related]
49. Modeling classical wavefront sensors. Wang C; Fu Q; Dun X; Heidrich W Opt Express; 2020 Feb; 28(4):5273-5287. PubMed ID: 32121752 [TBL] [Abstract][Full Text] [Related]
50. Centroid computation for Shack-Hartmann wavefront sensor in extreme situations based on artificial neural networks. Li Z; Li X Opt Express; 2018 Nov; 26(24):31675-31692. PubMed ID: 30650751 [TBL] [Abstract][Full Text] [Related]
51. Highly Sensitive Shack-Hartmann Wavefront Sensor: Application to Non-Transparent Tissue Mimic Imaging with Adaptive Light-Sheet Fluorescence Microscopy. Morgado Brajones J; Clouvel G; Dovillaire G; Levecq X; Lorenzo C Methods Protoc; 2019 Jul; 2(3):. PubMed ID: 31336779 [TBL] [Abstract][Full Text] [Related]
52. Adaptive optics system for a short wavelength mid-IR laser based on a Shack-Hartmann wavefront sensor and analysis of thermal noise impacts. Zhou H; Pilar J; Smrz M; Chen L; Čech M; Mocek T Appl Opt; 2022 Sep; 61(27):7958-7965. PubMed ID: 36255916 [TBL] [Abstract][Full Text] [Related]