These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 39134558)

  • 1. A practically efficient algorithm for identifying critical control proteins in directed probabilistic biological networks.
    Tokuhara Y; Akutsu T; Schwartz JM; Nacher JC
    NPJ Syst Biol Appl; 2024 Aug; 10(1):87. PubMed ID: 39134558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical controllability analysis of directed biological networks using efficient graph reduction.
    Ishitsuka M; Akutsu T; Nacher JC
    Sci Rep; 2017 Oct; 7(1):14361. PubMed ID: 29084972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network controllability analysis of intracellular signalling reveals viruses are actively controlling molecular systems.
    Ravindran V; Nacher JC; Akutsu T; Ishitsuka M; Osadcenco A; Sunitha V; Bagler G; Schwartz JM; Robertson DL
    Sci Rep; 2019 Feb; 9(1):2066. PubMed ID: 30765882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring criticality in control of complex biological networks.
    Someya W; Akutsu T; Schwartz JM; Nacher JC
    NPJ Syst Biol Appl; 2024 Jan; 10(1):9. PubMed ID: 38245555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel algorithm for finding optimal driver nodes to target control complex networks and its applications for drug targets identification.
    Guo WF; Zhang SW; Shi QQ; Zhang CM; Zeng T; Chen L
    BMC Genomics; 2018 Jan; 19(Suppl 1):924. PubMed ID: 29363426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of important nodes in directed biological networks: a network motif approach.
    Wang P; Lü J; Yu X
    PLoS One; 2014; 9(8):e106132. PubMed ID: 25170616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing the topology of probabilistic biological networks.
    Todor A; Dobra A; Kahveci T
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(4):970-83. PubMed ID: 24334390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous cotemporal probabilistic modeling of systems biology networks from sparse data.
    John DJ; Fetrow JS; Norris JL
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1208-22. PubMed ID: 20855920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixture models and exploratory analysis in networks.
    Newman ME; Leicht EA
    Proc Natl Acad Sci U S A; 2007 Jun; 104(23):9564-9. PubMed ID: 17525150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Markov-Shannon Entropy models to assess connectivity quality in complex networks: from molecular to cellular pathway, Parasite-Host, Neural, Industry, and Legal-Social networks.
    Riera-Fernández P; Munteanu CR; Escobar M; Prado-Prado F; Martín-Romalde R; Pereira D; Villalba K; Duardo-Sánchez A; González-Díaz H
    J Theor Biol; 2012 Jan; 293():174-88. PubMed ID: 22037044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene expression network reconstruction by convex feature selection when incorporating genetic perturbations.
    Logsdon BA; Mezey J
    PLoS Comput Biol; 2010 Dec; 6(12):e1001014. PubMed ID: 21152011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probabilistic Critical Controllability Analysis of Protein Interaction Networks Integrating Normal Brain Ageing Gene Expression Profiles.
    Yamaguchi E; Akutsu T; Nacher JC
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WDNfinder: A method for minimum driver node set detection and analysis in directed and weighted biological network.
    Chu Y; Wang Z; Wang R; Zhang N; Li J; Hu Y; Teng M; Wang Y
    J Bioinform Comput Biol; 2017 Oct; 15(5):1750021. PubMed ID: 28918707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Critical and Redundant Vertices in Controlling Directed Complex Networks Using Feedback Vertex Sets.
    Bao Y; Hayashida M; Liu P; Ishitsuka M; Nacher JC; Akutsu T
    J Comput Biol; 2018 Oct; 25(10):1071-1090. PubMed ID: 30074414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational methods for identifying the critical nodes in biological networks.
    Liu X; Hong Z; Liu J; Lin Y; Rodríguez-Patón A; Zou Q; Zeng X
    Brief Bioinform; 2020 Mar; 21(2):486-497. PubMed ID: 30753282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological Network Inference and analysis using SEBINI and CABIN.
    Taylor R; Singhal M
    Methods Mol Biol; 2009; 541():551-76. PubMed ID: 19381531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SMETANA: accurate and scalable algorithm for probabilistic alignment of large-scale biological networks.
    Sahraeian SM; Yoon BJ
    PLoS One; 2013; 8(7):e67995. PubMed ID: 23874484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Efficient Approach Towards the Source-Target Control of Boolean Networks.
    Paul S; Su C; Pang J; Mizera A
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):1932-1945. PubMed ID: 31095489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Target controllability with minimal mediators in complex biological networks.
    Ebrahimi A; Nowzari-Dalini A; Jalili M; Masoudi-Nejad A
    Genomics; 2020 Nov; 112(6):4938-4944. PubMed ID: 32905831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New Algorithm for Counting Independent Motifs in Probabilistic Networks.
    Sarkar A; Ren Y; Elhesha R; Kahveci T
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1049-1062. PubMed ID: 29994098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.