These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. A modified motor-clutch model reveals that neuronal growth cones respond faster to soft substrates. Cifuentes LP; Athamneh AIM; Efremov Y; Raman A; Kim T; Suter DM Mol Biol Cell; 2024 Apr; 35(4):ar47. PubMed ID: 38354034 [TBL] [Abstract][Full Text] [Related]
7. Conversion of a signal into forces for axon outgrowth through Pak1-mediated shootin1 phosphorylation. Toriyama M; Kozawa S; Sakumura Y; Inagaki N Curr Biol; 2013 Mar; 23(6):529-34. PubMed ID: 23453953 [TBL] [Abstract][Full Text] [Related]
8. A molecular clutch between the actin flow and N-cadherin adhesions drives growth cone migration. Bard L; Boscher C; Lambert M; Mège RM; Choquet D; Thoumine O J Neurosci; 2008 Jun; 28(23):5879-90. PubMed ID: 18524892 [TBL] [Abstract][Full Text] [Related]
17. The role of Arp2/3 in growth cone actin dynamics and guidance is substrate dependent. San Miguel-Ruiz JE; Letourneau PC J Neurosci; 2014 Apr; 34(17):5895-908. PubMed ID: 24760849 [TBL] [Abstract][Full Text] [Related]
18. Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones. Garcia M; Leduc C; Lagardère M; Argento A; Sibarita JB; Thoumine O Proc Natl Acad Sci U S A; 2015 Jun; 112(22):6997-7002. PubMed ID: 26038554 [TBL] [Abstract][Full Text] [Related]
19. Shootin1-cortactin interaction mediates signal-force transduction for axon outgrowth. Kubo Y; Baba K; Toriyama M; Minegishi T; Sugiura T; Kozawa S; Ikeda K; Inagaki N J Cell Biol; 2015 Aug; 210(4):663-76. PubMed ID: 26261183 [TBL] [Abstract][Full Text] [Related]
20. Strength in the periphery: growth cone biomechanics and substrate rigidity response in peripheral and central nervous system neurons. Koch D; Rosoff WJ; Jiang J; Geller HM; Urbach JS Biophys J; 2012 Feb; 102(3):452-60. PubMed ID: 22325267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]