These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 39134855)

  • 1. Interrogating the Molecular Clutch in Neuronal Growth Cones: Measuring Traction Forces, F-actin Retrograde Flow, and Point Contact Demographics.
    Ghate K; Mutalik SP; Ghose A
    Methods Mol Biol; 2024; 2831():251-264. PubMed ID: 39134855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyses of Actin Dynamics, Clutch Coupling and Traction Force for Growth Cone Advance.
    Minegishi T; Fujikawa R; Kastian RF; Sakumura Y; Inagaki N
    J Vis Exp; 2021 Oct; (176):. PubMed ID: 34747402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fmn2 Regulates Growth Cone Motility by Mediating a Molecular Clutch to Generate Traction Forces.
    Ghate K; Mutalik SP; Sthanam LK; Sen S; Ghose A
    Neuroscience; 2020 Nov; 448():160-171. PubMed ID: 33002558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guidance of Axons by Local Coupling of Retrograde Flow to Point Contact Adhesions.
    Nichol RH; Hagen KM; Lumbard DC; Dent EW; Gómez TM
    J Neurosci; 2016 Feb; 36(7):2267-82. PubMed ID: 26888936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanosensitive axon outgrowth mediated by L1-laminin clutch interface.
    Abe K; Baba K; Huang L; Wei KT; Okano K; Hosokawa Y; Inagaki N
    Biophys J; 2021 Sep; 120(17):3566-3576. PubMed ID: 34384760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A modified motor-clutch model reveals that neuronal growth cones respond faster to soft substrates.
    Cifuentes LP; Athamneh AIM; Efremov Y; Raman A; Kim T; Suter DM
    Mol Biol Cell; 2024 Apr; 35(4):ar47. PubMed ID: 38354034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of a signal into forces for axon outgrowth through Pak1-mediated shootin1 phosphorylation.
    Toriyama M; Kozawa S; Sakumura Y; Inagaki N
    Curr Biol; 2013 Mar; 23(6):529-34. PubMed ID: 23453953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A molecular clutch between the actin flow and N-cadherin adhesions drives growth cone migration.
    Bard L; Boscher C; Lambert M; Mège RM; Choquet D; Thoumine O
    J Neurosci; 2008 Jun; 28(23):5879-90. PubMed ID: 18524892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring Retrograde Actin Flow in Neuronal Growth Cones.
    Pulido Cifuentes L; Suter DM
    Methods Mol Biol; 2024; 2831():265-282. PubMed ID: 39134856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate Deformation Predicts Neuronal Growth Cone Advance.
    Athamneh AI; Cartagena-Rivera AX; Raman A; Suter DM
    Biophys J; 2015 Oct; 109(7):1358-71. PubMed ID: 26445437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shootin1b Mediates a Mechanical Clutch to Produce Force for Neuronal Migration.
    Minegishi T; Uesugi Y; Kaneko N; Yoshida W; Sawamoto K; Inagaki N
    Cell Rep; 2018 Oct; 25(3):624-639.e6. PubMed ID: 30332643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local Arp2/3-dependent actin assembly modulates applied traction force during apCAM adhesion site maturation.
    Buck KB; Schaefer AW; Schoonderwoert VT; Creamer MS; Dufresne ER; Forscher P
    Mol Biol Cell; 2017 Jan; 28(1):98-110. PubMed ID: 27852899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Traction dynamics of filopodia on compliant substrates.
    Chan CE; Odde DJ
    Science; 2008 Dec; 322(5908):1687-91. PubMed ID: 19074349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bidirectional interactions between NOX2-type NADPH oxidase and the F-actin cytoskeleton in neuronal growth cones.
    Munnamalai V; Weaver CJ; Weisheit CE; Venkatraman P; Agim ZS; Quinn MT; Suter DM
    J Neurochem; 2014 Aug; 130(4):526-40. PubMed ID: 24702317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of microtubule dynamics during adhesion-mediated growth cone guidance.
    Lee AC; Suter DM
    Dev Neurobiol; 2008 Oct; 68(12):1363-77. PubMed ID: 18698606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myosin IIB is required for growth cone motility.
    Bridgman PC; Dave S; Asnes CF; Tullio AN; Adelstein RS
    J Neurosci; 2001 Aug; 21(16):6159-69. PubMed ID: 11487639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of Arp2/3 in growth cone actin dynamics and guidance is substrate dependent.
    San Miguel-Ruiz JE; Letourneau PC
    J Neurosci; 2014 Apr; 34(17):5895-908. PubMed ID: 24760849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones.
    Garcia M; Leduc C; Lagardère M; Argento A; Sibarita JB; Thoumine O
    Proc Natl Acad Sci U S A; 2015 Jun; 112(22):6997-7002. PubMed ID: 26038554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shootin1-cortactin interaction mediates signal-force transduction for axon outgrowth.
    Kubo Y; Baba K; Toriyama M; Minegishi T; Sugiura T; Kozawa S; Ikeda K; Inagaki N
    J Cell Biol; 2015 Aug; 210(4):663-76. PubMed ID: 26261183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strength in the periphery: growth cone biomechanics and substrate rigidity response in peripheral and central nervous system neurons.
    Koch D; Rosoff WJ; Jiang J; Geller HM; Urbach JS
    Biophys J; 2012 Feb; 102(3):452-60. PubMed ID: 22325267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.