These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 39134856)

  • 21. Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones.
    Garcia M; Leduc C; Lagardère M; Argento A; Sibarita JB; Thoumine O
    Proc Natl Acad Sci U S A; 2015 Jun; 112(22):6997-7002. PubMed ID: 26038554
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microtubule and Rac 1-dependent F-actin in growth cones.
    Grabham PW; Reznik B; Goldberg DJ
    J Cell Sci; 2003 Sep; 116(Pt 18):3739-48. PubMed ID: 12890754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of actin turnover in retrograde actin network flow in neuronal growth cones.
    Van Goor D; Hyland C; Schaefer AW; Forscher P
    PLoS One; 2012; 7(2):e30959. PubMed ID: 22359556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increase in Growth Cone Size Correlates with Decrease in Neurite Growth Rate.
    Ren Y; Suter DM
    Neural Plast; 2016; 2016():3497901. PubMed ID: 27274874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-resolution analysis of neuronal growth cone morphology by comparative atomic force and optical microscopy.
    Grzywa EL; Lee AC; Lee GU; Suter DM
    J Neurobiol; 2006 Dec; 66(14):1529-43. PubMed ID: 17058186
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Src and cortactin promote lamellipodia protrusion and filopodia formation and stability in growth cones.
    He Y; Ren Y; Wu B; Decourt B; Lee AC; Taylor A; Suter DM
    Mol Biol Cell; 2015 Sep; 26(18):3229-44. PubMed ID: 26224308
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nerve growth factor stimulates coupling of beta1 integrin to distinct transport mechanisms in the filopodia of growth cones.
    Grabham PW; Foley M; Umeojiako A; Goldberg DJ
    J Cell Sci; 2000 Sep; 113 ( Pt 17)():3003-12. PubMed ID: 10934039
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Axon branching requires interactions between dynamic microtubules and actin filaments.
    Dent EW; Kalil K
    J Neurosci; 2001 Dec; 21(24):9757-69. PubMed ID: 11739584
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate Deformation Predicts Neuronal Growth Cone Advance.
    Athamneh AI; Cartagena-Rivera AX; Raman A; Suter DM
    Biophys J; 2015 Oct; 109(7):1358-71. PubMed ID: 26445437
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Microtubule-Associated Protein Tau Mediates the Organization of Microtubules and Their Dynamic Exploration of Actin-Rich Lamellipodia and Filopodia of Cortical Growth Cones.
    Biswas S; Kalil K
    J Neurosci; 2018 Jan; 38(2):291-307. PubMed ID: 29167405
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arp2/3 complex-dependent actin networks constrain myosin II function in driving retrograde actin flow.
    Yang Q; Zhang XF; Pollard TD; Forscher P
    J Cell Biol; 2012 Jun; 197(7):939-56. PubMed ID: 22711700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microtubules, actin and cytolinkers: how to connect cytoskeletons in the neuronal growth cone.
    Pinto-Costa R; Sousa MM
    Neurosci Lett; 2021 Mar; 747():135693. PubMed ID: 33529653
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone.
    Forscher P; Smith SJ
    J Cell Biol; 1988 Oct; 107(4):1505-16. PubMed ID: 3170637
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A modified motor-clutch model reveals that neuronal growth cones respond faster to soft substrates.
    Cifuentes LP; Athamneh AIM; Efremov Y; Raman A; Kim T; Suter DM
    Mol Biol Cell; 2024 Apr; 35(4):ar47. PubMed ID: 38354034
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Guidance of Axons by Local Coupling of Retrograde Flow to Point Contact Adhesions.
    Nichol RH; Hagen KM; Lumbard DC; Dent EW; Gómez TM
    J Neurosci; 2016 Feb; 36(7):2267-82. PubMed ID: 26888936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Axonal actin in action: Imaging actin dynamics in neurons.
    Ladt K; Ganguly A; Roy S
    Methods Cell Biol; 2016; 131():91-106. PubMed ID: 26794509
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Live Imaging of Cytoskeletal Dynamics in Embryonic
    Erdogan B; Bearce EA; Lowery LA
    Cold Spring Harb Protoc; 2021 Apr; 2021(4):pdb.prot104463. PubMed ID: 33272974
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Actin dynamics in neuronal growth cone revealed with a polarized light microscopy.
    Katoh K; Yoshida F; Ishikaw R
    Adv Exp Med Biol; 2003; 538():347-58; discussion 358-9. PubMed ID: 15098681
    [No Abstract]   [Full Text] [Related]  

  • 39. The Ig superfamily cell adhesion molecule, apCAM, mediates growth cone steering by substrate-cytoskeletal coupling.
    Suter DM; Errante LD; Belotserkovsky V; Forscher P
    J Cell Biol; 1998 Apr; 141(1):227-40. PubMed ID: 9531561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neurotrophin regulation of beta-actin mRNA and protein localization within growth cones.
    Zhang HL; Singer RH; Bassell GJ
    J Cell Biol; 1999 Oct; 147(1):59-70. PubMed ID: 10508855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.