These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 39136134)

  • 1. Fourier Surfaces Reaching Full-Color Diffraction Limits.
    Lim Y; Hong SJ; Cho Y; Bang J; Lee S
    Adv Mater; 2024 Oct; 36(40):e2404540. PubMed ID: 39136134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward Near-Perfect Diffractive Optical Elements
    Wang H; Wang H; Zhang W; Yang JKW
    ACS Nano; 2020 Aug; 14(8):10452-10461. PubMed ID: 32687316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoimprinting lithography of a two-layer phase mask for three-dimensional photonic structure holographic fabrications via single exposure.
    Xu D; Chen KP; Ohlinger K; Lin Y
    Nanotechnology; 2011 Jan; 22(3):035303. PubMed ID: 21149952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffraction-limited blazed reflection diffractive microlenses for oblique incidence fabricated by electron-beam lithography.
    Shiono T; Ogawa H
    Appl Opt; 1991 Sep; 30(25):3643-9. PubMed ID: 20706439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid refractive-diffractive axicons for Bessel-beam multiplexing and resolution improvement.
    Gorelick S; Paganin DM; Korneev D; de Marco A
    Opt Express; 2020 Apr; 28(8):12174-12188. PubMed ID: 32403716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using high-diffraction-efficiency holographic optical elements in a full-color augmented reality display system.
    He L; Chen X; Yang Y; Liu X; Chen Y; Xu L; Gu C
    Opt Express; 2023 Aug; 31(18):29843-29858. PubMed ID: 37710775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compact full-color augmented reality near-eye display using freeform optics and a holographic optical combiner.
    Shu T; Hu G; Wu R; Li H; Zhang Z; Liu X
    Opt Express; 2022 Aug; 30(18):31714-31727. PubMed ID: 36242248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards Two-Photon Polymerization-Compatible Diffractive Optics for Micro-Mechanical Applications.
    Stinson VP; Subash U; Poutous MK; Hofmann T
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of Optical Fourier Surface by Multiple-Frequency Vibration Cutting for Structural True Coloration.
    Ding P; Zhang J; Feng P; Zhang X; Zheng Z; Wang J
    Small; 2023 Nov; 19(48):e2303500. PubMed ID: 37541661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffraction symmetry of binary Fourier elements with feature sizes on the order of the illumination wavelength and effects of fabrication errors.
    Nguyen GN; Heggarty K; Meur JL; Bacher A; Meyrueis P
    Opt Lett; 2017 Dec; 42(24):5178-5181. PubMed ID: 29240167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and fabricate freeform holographic optical elements on curved optical surfaces using holographic printing.
    Shu T; Pei C; Wu R; Li H; Liu X
    Opt Lett; 2023 Dec; 48(24):6537-6540. PubMed ID: 38099793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanofabrication of Bulk Diffraction Nanogratings via Direct Ultrashort-Pulse Laser Micro-Inscription in Elastomers and Heat-Shrinkable Polymers.
    Kesaev V; Rupasov A; Smirnov N; Pakholchuk P; Kudryashov S; Odintsova G
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achromatic diffractive liquid-crystal optics for virtual reality displays.
    Luo Z; Li Y; Semmen J; Rao Y; Wu ST
    Light Sci Appl; 2023 Sep; 12(1):230. PubMed ID: 37714841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full-color eye-box expansion via holographic volume gratings recorded in photo-thermo-refractive glass.
    Yaraghi S; Mohammadian N; Mhibik O; Chang KH; Seder T; Glebov L; Divliansky I
    Opt Express; 2023 Jan; 31(2):1755-1763. PubMed ID: 36785203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-driven phase transition of diffractive optical elements based on liquid crystal elastomers.
    Chen L; Liu J; Cheng M; Wang Z; Cai W; Ma Z; Bai Z; Kong D; Cen M; Liu YJ
    Opt Express; 2024 Mar; 32(7):12528-12536. PubMed ID: 38571073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical Fourier surfaces.
    Lassaline N; Brechbühler R; Vonk SJW; Ridderbeek K; Spieser M; Bisig S; le Feber B; Rabouw FT; Norris DJ
    Nature; 2020 Jun; 582(7813):506-510. PubMed ID: 32581384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photolithographic fabrication method of computer-generated holographic interferograms.
    Kajanto M; Byckling E; Fagerholm J; Heikonen J; Turunen J; Vasara A; Salin A
    Appl Opt; 1989 Feb; 28(4):778-84. PubMed ID: 20548559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metasurface-empowered spectral and spatial light modulation for disruptive holographic displays.
    Kim G; Kim S; Kim H; Lee J; Badloe T; Rho J
    Nanoscale; 2022 Mar; 14(12):4380-4410. PubMed ID: 35266481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the color gamut of waveguide displays for augmented reality head-mounted displays through spatially modulated diffraction grating.
    Lee JS; Cho SH; Choi WJ; Choi YW
    Sci Rep; 2024 Apr; 14(1):8821. PubMed ID: 38627454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherent coupling of vertical-cavity surface-emitting laser arrays and efficient beam combining by diffractive optical elements: concept and experimental verification.
    Hergenhan G; Lücke B; Brauch U
    Appl Opt; 2003 Mar; 42(9):1667-80. PubMed ID: 12665097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.