These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 39136247)
21. Tailored conductive fullerenes-based passivator for efficient and stable inverted perovskite solar cells. Zheng T; Fan B; Zhao Y; Jin B; Fan L; Peng R J Colloid Interface Sci; 2021 Sep; 598():229-237. PubMed ID: 33901848 [TBL] [Abstract][Full Text] [Related]
22. An Azaacene Derivative as Promising Electron-Transport Layer for Inverted Perovskite Solar Cells. Gu PY; Wang N; Wu A; Wang Z; Tian M; Fu Z; Sun XW; Zhang Q Chem Asian J; 2016 Aug; 11(15):2135-8. PubMed ID: 27378599 [TBL] [Abstract][Full Text] [Related]
23. Concise synthesis of low-cost fullerene derivatives as electron transport materials for efficient air-processed invert perovskite solar cells. Zheng T; Fan L; Jin B; Peng R J Colloid Interface Sci; 2023 Jul; 642():497-504. PubMed ID: 37023521 [TBL] [Abstract][Full Text] [Related]
24. Origins of the s-shape characteristic in J-V curve of inverted-type perovskite solar cells. Chiang SE; Wu JR; Cheng HM; Hsu CL; Shen JL; Yuan CT; Chang SH Nanotechnology; 2020 Mar; 31(11):115403. PubMed ID: 31751983 [TBL] [Abstract][Full Text] [Related]
25. Enhanced Performance of Inverted Non-Fullerene Organic Solar Cells by Using Metal Oxide Electron- and Hole-Selective Layers with Process Temperature ≤150 °C. You H; Dai L; Zhang Q; Chen D; Jiang Q; Zhang C Polymers (Basel); 2018 Jul; 10(7):. PubMed ID: 30960650 [TBL] [Abstract][Full Text] [Related]
26. Achieving High Efficiency in Solution-Processed Perovskite Solar Cells Using C Lin HS; Jeon I; Xiang R; Seo S; Lee JW; Li C; Pal A; Manzhos S; Goorsky MS; Yang Y; Maruyama S; Matsuo Y ACS Appl Mater Interfaces; 2018 Nov; 10(46):39590-39598. PubMed ID: 30259726 [TBL] [Abstract][Full Text] [Related]
27. Dehydration-Reaction-Based Low-Temperature Synthesis of Amorphous SnO Shang Y; Zhang T; Yu D; Peng Z; Zhou W; Yin D; Ning Z ACS Appl Mater Interfaces; 2021 Oct; 13(40):47603-47609. PubMed ID: 34582165 [TBL] [Abstract][Full Text] [Related]
28. Pyridine-Functionalized Fullerene Electron Transport Layer for Efficient Planar Perovskite Solar Cells. Liu HR; Li SH; Deng LL; Wang ZY; Xing Z; Rong X; Tian HR; Li X; Xie SY; Huang RB; Zheng LS ACS Appl Mater Interfaces; 2019 Jul; 11(27):23982-23989. PubMed ID: 31257863 [TBL] [Abstract][Full Text] [Related]
29. Non-Fullerene Acceptors Assisted Target Therapy for Interface Treatment Enable High Performance Inverted Perovskite Solar Cells. Pu Z; Li J; Xie L; Tong X; Yang S; Liu J; Chen J; Yang M; Yang D; Ge Z Small; 2024 Jul; 20(28):e2310742. PubMed ID: 38329192 [TBL] [Abstract][Full Text] [Related]
30. Enhanced efficiency and air-stability of NiO Lee K; Ryu J; Yu H; Yun J; Lee J; Jang J Nanoscale; 2017 Nov; 9(42):16249-16255. PubMed ID: 29043370 [TBL] [Abstract][Full Text] [Related]
31. Fully Inorganic CsSnI Ma S; Gu X; Kyaw AK; Wang DH; Priya S; Ye T ACS Appl Mater Interfaces; 2021 Jan; 13(1):1345-1352. PubMed ID: 33382595 [TBL] [Abstract][Full Text] [Related]
32. Adsorbed carbon nanomaterials for surface and interface-engineered stable rubidium multi-cation perovskite solar cells. Mahmud MA; Elumalai NK; Upama MB; Wang D; Zarei L; Gonçales VR; Wright M; Xu C; Haque F; Uddin A Nanoscale; 2018 Jan; 10(2):773-790. PubMed ID: 29256572 [TBL] [Abstract][Full Text] [Related]
33. Stable Efficiency Exceeding 20.6% for Inverted Perovskite Solar Cells through Polymer-Optimized PCBM Electron-Transport Layers. Yang D; Zhang X; Wang K; Wu C; Yang R; Hou Y; Jiang Y; Liu S; Priya S Nano Lett; 2019 May; 19(5):3313-3320. PubMed ID: 30986075 [TBL] [Abstract][Full Text] [Related]
34. Azahomofullerenes as New n-Type Acceptor Materials for Efficient and Stable Inverted Planar Perovskite Solar Cells. Chavan RD; Prochowicz D; Bończak B; Fiałkowski M; Tavakoli MM; Yadav P; Patel MJ; Gupta SK; Gajjar PN; Hong CK ACS Appl Mater Interfaces; 2021 May; 13(17):20296-20304. PubMed ID: 33877795 [TBL] [Abstract][Full Text] [Related]
35. Hybrid Fullerene-Based Electron Transport Layers Improving the Thermal Stability of Perovskite Solar Cells. Li SH; Xing Z; Wu BS; Chen ZC; Yao YR; Tian HR; Li MF; Yun DQ; Deng LL; Xie SY; Huang RB; Zheng LS ACS Appl Mater Interfaces; 2020 May; 12(18):20733-20740. PubMed ID: 32286057 [TBL] [Abstract][Full Text] [Related]
36. Low-Temperature Solution-Processed ZnSe Electron Transport Layer for Efficient Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Photostability. Li X; Yang J; Jiang Q; Lai H; Li S; Xin J; Chu W; Hou J ACS Nano; 2018 Jun; 12(6):5605-5614. PubMed ID: 29741863 [TBL] [Abstract][Full Text] [Related]
37. Efficient and stable inverted perovskite solar cells enabled by inhibition of self-aggregation of fullerene electron-transporting compounds. Tian C; Betancourt-Solis G; Nan Z; Liu K; Lin K; Lu J; Xie L; Echegoyen L; Wei Z Sci Bull (Beijing); 2021 Feb; 66(4):339-346. PubMed ID: 36654413 [TBL] [Abstract][Full Text] [Related]
38. Effect of Energy Alignment, Electron Mobility, and Film Morphology of Perylene Diimide Based Polymers as Electron Transport Layer on the Performance of Perovskite Solar Cells. Guo Q; Xu Y; Xiao B; Zhang B; Zhou E; Wang F; Bai Y; Hayat T; Alsaedi A; Tan Z ACS Appl Mater Interfaces; 2017 Mar; 9(12):10983-10991. PubMed ID: 28276675 [TBL] [Abstract][Full Text] [Related]
39. Non-Fullerene Organic Electron Transport Materials toward Stable and Efficient Inverted Perovskite Photovoltaics. Wang H; Zhang C; Yao Y; Cheng C; Wang K Small; 2024 Oct; 20(43):e2403193. PubMed ID: 38924212 [TBL] [Abstract][Full Text] [Related]
40. Low-Temperature Atomic Layer Deposition of Metal Oxide Layers for Perovskite Solar Cells with High Efficiency and Stability under Harsh Environmental Conditions. Lv Y; Xu P; Ren G; Chen F; Nan H; Liu R; Wang D; Tan X; Liu X; Zhang H; Chen ZK ACS Appl Mater Interfaces; 2018 Jul; 10(28):23928-23937. PubMed ID: 29952555 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]