These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 39136463)
1. Bacteriophage therapy reduces Molendijk MM; Boekema BKHL; Lattwein KR; Vlig M; Bode LGM; Koopmans MPG; Verbon A; de Graaf M; van Wamel WJB Antimicrob Agents Chemother; 2024 Sep; 68(9):e0065024. PubMed ID: 39136463 [TBL] [Abstract][Full Text] [Related]
2. Development of a High-Throughput Alves DR; Booth SP; Scavone P; Schellenberger P; Salvage J; Dedi C; Thet NT; Jenkins ATA; Waters R; Ng KW; Overall ADJ; Metcalfe AD; Nzakizwanayo J; Jones BV Front Cell Infect Microbiol; 2018; 8():196. PubMed ID: 29963501 [TBL] [Abstract][Full Text] [Related]
3. Bacteriophage therapy for Staphylococcus aureus biofilm-infected wounds: a new approach to chronic wound care. Seth AK; Geringer MR; Nguyen KT; Agnew SP; Dumanian Z; Galiano RD; Leung KP; Mustoe TA; Hong SJ Plast Reconstr Surg; 2013 Feb; 131(2):225-234. PubMed ID: 23357984 [TBL] [Abstract][Full Text] [Related]
4. Novel recombinant endolysin ointment with broad antimicrobial activity against methicillin-resistant Staphylococcus aureus isolated from wounds and burns. Hamed ZO; Awni AA; Abdulamir AS Arch Microbiol; 2023 Mar; 205(4):104. PubMed ID: 36869962 [TBL] [Abstract][Full Text] [Related]
5. Bacteriophages for Chronic Wound Treatment: from Traditional to Novel Delivery Systems. Pinto AM; Cerqueira MA; Bañobre-Lópes M; Pastrana LM; Sillankorva S Viruses; 2020 Feb; 12(2):. PubMed ID: 32093349 [TBL] [Abstract][Full Text] [Related]
6. Engineered Bacteriophage-Polymer Nanoassemblies for Treatment of Wound Biofilm Infections. Park J; Hassan MA; Nabawy A; Li CH; Jiang M; Parmar K; Reddivari A; Goswami R; Jeon T; Patel R; Rotello VM ACS Nano; 2024 Oct; 18(39):26928-26936. PubMed ID: 39287559 [TBL] [Abstract][Full Text] [Related]
7. Development of Chitosan-Based Hydrogel Containing Antibiofilm Agents for the Treatment of Staphylococcus aureus-Infected Burn Wound in Mice. Chhibber T; Gondil VS; Sinha VR AAPS PharmSciTech; 2020 Jan; 21(2):43. PubMed ID: 31897806 [TBL] [Abstract][Full Text] [Related]
8. Development of an Experimental Ex Vivo Wound Model to Evaluate Antimicrobial Efficacy of Topical Formulations. Andersson MÅ; Madsen LB; Schmidtchen A; Puthia M Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34068733 [TBL] [Abstract][Full Text] [Related]
9. Efficacy of phage cocktail AB-SA01 therapy in diabetic mouse wound infections caused by multidrug-resistant Staphylococcus aureus. Kifelew LG; Warner MS; Morales S; Vaughan L; Woodman R; Fitridge R; Mitchell JG; Speck P BMC Microbiol; 2020 Jul; 20(1):204. PubMed ID: 32646376 [TBL] [Abstract][Full Text] [Related]
10. Bacteriophage entrapped chitosan microgel for the treatment of biofilm-mediated polybacterial infection in burn wounds. Dehari D; Kumar DN; Chaudhuri A; Kumar A; Kumar R; Kumar D; Singh S; Nath G; Agrawal AK Int J Biol Macromol; 2023 Dec; 253(Pt 5):127247. PubMed ID: 37802451 [TBL] [Abstract][Full Text] [Related]
11. In vivo efficacy of single phage versus phage cocktail in resolving burn wound infection in BALB/c mice. Chadha P; Katare OP; Chhibber S Microb Pathog; 2016 Oct; 99():68-77. PubMed ID: 27498362 [TBL] [Abstract][Full Text] [Related]
12. Phage therapy combined with Gum Karaya injectable hydrogels for treatment of methicillin-resistant Staphylococcus aureus deep wound infection in a porcine model. Vacek L; Polaštík Kleknerová D; Lipový B; Holoubek J; Matysková D; Černá E; Brtníková J; Jeklová E; Kobzová Š; Janda L; Lišková L; Diabelko D; Botka T; Pantůček R; Růžička F; Vojtová L Int J Pharm; 2024 Jul; 660():124348. PubMed ID: 38885776 [TBL] [Abstract][Full Text] [Related]
13. Nano-engineered lipid-polymer hybrid nanoparticles of fusidic acid: an investigative study on dermatokinetics profile and MRSA-infected burn wound model. Thakur K; Sharma G; Singh B; Chhibber S; Katare OP Drug Deliv Transl Res; 2019 Aug; 9(4):748-763. PubMed ID: 30652257 [TBL] [Abstract][Full Text] [Related]
15. The Role of Phage Therapy in Burn Wound Infections Management: Advantages and Pitfalls. Azevedo MM; Pina-Vaz C; Rodrigues AG J Burn Care Res; 2022 Mar; 43(2):336-342. PubMed ID: 34523679 [TBL] [Abstract][Full Text] [Related]
16. Histopathological comparisons of Staphylococcus aureus and Pseudomonas aeruginosa experimental infected porcine burn wounds. Chaney SB; Ganesh K; Mathew-Steiner S; Stromberg P; Roy S; Sen CK; Wozniak DJ Wound Repair Regen; 2017 May; 25(3):541-549. PubMed ID: 28466497 [TBL] [Abstract][Full Text] [Related]
17. Synergistic action of phage phiIPLA-RODI and lytic protein CHAPSH3b: a combination strategy to target Staphylococcus aureus biofilms. Duarte AC; Fernández L; De Maesschalck V; Gutiérrez D; Campelo AB; Briers Y; Lavigne R; Rodríguez A; García P NPJ Biofilms Microbiomes; 2021 Apr; 7(1):39. PubMed ID: 33888725 [TBL] [Abstract][Full Text] [Related]
18. Bacteriophage Therapy of Chronic Nonhealing Wound: Clinical Study. Gupta P; Singh HS; Shukla VK; Nath G; Bhartiya SK Int J Low Extrem Wounds; 2019 Jun; 18(2):171-175. PubMed ID: 31081402 [TBL] [Abstract][Full Text] [Related]
19. Bacteriophage Therapy for the Prevention and Treatment of Fracture-Related Infection Caused by Staphylococcus aureus: a Preclinical Study. Onsea J; Post V; Buchholz T; Schwegler H; Zeiter S; Wagemans J; Pirnay JP; Merabishvili M; D'Este M; Rotman SG; Trampuz A; Verhofstad MHJ; Obremskey WT; Lavigne R; Richards RG; Moriarty TF; Metsemakers WJ Microbiol Spectr; 2021 Dec; 9(3):e0173621. PubMed ID: 34908439 [TBL] [Abstract][Full Text] [Related]
20. Bacteriophages as potential antibiotic potentiators in cystic fibrosis: A new model to study the combination of antibiotics with a bacteriophage cocktail targeting dual species biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. Wang Z; De Soir S; Glorieux A; Merabishvili M; Knoop C; De Vos D; Pirnay JP; Van Bambeke F Int J Antimicrob Agents; 2024 Sep; 64(3):107276. PubMed ID: 39009289 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]