These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 39136634)
1. A broadband active sound absorber with adjustable absorption coefficient and bandwidth. Wang K; Shi L; Zou H; Zhao S; Shen C; Lu J J Acoust Soc Am; 2024 Aug; 156(2):1048-1057. PubMed ID: 39136634 [TBL] [Abstract][Full Text] [Related]
2. Tunable network sound absorber based on additive manufacturing. Zhao T; Chen Y; Zhang K; Hu G J Acoust Soc Am; 2021 Jul; 150(1):94. PubMed ID: 34340480 [TBL] [Abstract][Full Text] [Related]
3. Broadband sound absorption based on impedance decoupling and modulation mechanisms. Mei Z; Li X; Lyu Y; Sang J; Cheng X; Yang J J Acoust Soc Am; 2023 Nov; 154(5):3479-3486. PubMed ID: 38019095 [TBL] [Abstract][Full Text] [Related]
4. Acoustic Metamaterials for Low-Frequency Noise Reduction Based on Parallel Connection of Multiple Spiral Chambers. Duan H; Yang F; Shen X; Yin Q; Wang E; Zhang X; Yang X; Shen C; Peng W Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683180 [TBL] [Abstract][Full Text] [Related]
5. Broadband thin sound absorber based on hybrid labyrinthine metastructures with optimally designed parameters. Gao YX; Lin YP; Zhu YF; Liang B; Yang J; Yang J; Cheng JC Sci Rep; 2020 Jul; 10(1):10705. PubMed ID: 32612130 [TBL] [Abstract][Full Text] [Related]
6. Graphene-Based THz Absorber with a Broad Band for Tuning the Absorption Rate and a Narrow Band for Tuning the Absorbing Frequency. Zhou Q; Liu P; Liu C; Zhou Y; Zha S Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31398824 [TBL] [Abstract][Full Text] [Related]
7. Development and Optimization of Broadband Acoustic Metamaterial Absorber Based on Parallel-Connection Square Helmholtz Resonators. Wang E; Yang F; Shen X; Duan H; Zhang X; Yin Q; Peng W; Yang X; Yang L Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629445 [TBL] [Abstract][Full Text] [Related]
8. Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound. Tang Y; Ren S; Meng H; Xin F; Huang L; Chen T; Zhang C; Lu TJ Sci Rep; 2017 Feb; 7():43340. PubMed ID: 28240239 [TBL] [Abstract][Full Text] [Related]
9. Compact broadband acoustic sink with coherently coupled weak resonances. Huang S; Zhou Z; Li D; Liu T; Wang X; Zhu J; Li Y Sci Bull (Beijing); 2020 Mar; 65(5):373-379. PubMed ID: 36659228 [TBL] [Abstract][Full Text] [Related]
10. Ultrathin acoustic metamaterial as super absorber for broadband low-frequency underwater sound. Zhou X; Wang X; Xin F Sci Rep; 2023 May; 13(1):7983. PubMed ID: 37198226 [TBL] [Abstract][Full Text] [Related]
11. An extra-broadband compact sound-absorbing structure composing of double-layer resonator with multiple perforations. Guo J; Fang Y; Qu R; Liu Q; Zhang X J Acoust Soc Am; 2021 Aug; 150(2):1370. PubMed ID: 34470319 [TBL] [Abstract][Full Text] [Related]
12. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers. Butun S; Aydin K Opt Express; 2014 Aug; 22(16):19457-68. PubMed ID: 25321029 [TBL] [Abstract][Full Text] [Related]
13. Perfect Broadband Sound Absorption on a Graphene-Decorated Porous System with Dual-3D Structures. Yu S; Ni J; Zhou Z; Xu S; Li D; Li Y; Qiu J ACS Appl Mater Interfaces; 2022 Jun; 14(24):28145-28153. PubMed ID: 35670698 [TBL] [Abstract][Full Text] [Related]
14. Development of Adjustable Parallel Helmholtz Acoustic Metamaterial for Broad Low-Frequency Sound Absorption Band. Yang X; Yang F; Shen X; Wang E; Zhang X; Shen C; Peng W Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079319 [TBL] [Abstract][Full Text] [Related]
15. Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons. Xu Z; Wu D; Liu Y; Liu C; Yu Z; Yu L; Ye H Nanoscale Res Lett; 2018 May; 13(1):143. PubMed ID: 29744682 [TBL] [Abstract][Full Text] [Related]
16. Ultra-sparse metamaterials absorber for broadband low-frequency sound with free ventilation. Shao C; Xiong W; Long H; Tao J; Cheng Y; Liu X J Acoust Soc Am; 2021 Aug; 150(2):1044. PubMed ID: 34470305 [TBL] [Abstract][Full Text] [Related]
17. Hybrid fractal acoustic metamaterials for low-frequency sound absorber based on cross mixed micro-perforated panel mounted over the fractals structure cavity. Singh SK; Prakash O; Bhattacharya S Sci Rep; 2022 Nov; 12(1):20444. PubMed ID: 36443324 [TBL] [Abstract][Full Text] [Related]
18. Study on a Hexagonal Acoustic Metamaterial Cell of Multiple Parallel-Connection Resonators with Tunable Perforating Rate. Cheng H; Yang F; Shen X; Yang X; Zhang X; Bi S Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570082 [TBL] [Abstract][Full Text] [Related]
19. A tri-functional, independently tunable terahertz absorber based on a vanadium dioxide-graphene hybrid structure. Wu G; Li C; Wang D; Gao S; Chen W; Guo S; Xiong J Phys Chem Chem Phys; 2024 Mar; 26(11):8993-9004. PubMed ID: 38440799 [TBL] [Abstract][Full Text] [Related]
20. Some considerations on the use of space sound absorbers with next-generation materials reflecting COVID situations in Japan: additional sound absorption for post-pandemic challenges in indoor acoustic environments. Sakagami K; Okuzono T UCL Open Environ; 2020; 2():e012. PubMed ID: 37229290 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]