These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 39136634)
21. Active control of acoustic reflection, absorption, and transmission using thin panel speakers. Zhu H; Rajamani R; Stelson KA J Acoust Soc Am; 2003 Feb; 113(2):852-70. PubMed ID: 12597180 [TBL] [Abstract][Full Text] [Related]
22. Adjustable Sound Absorber of Multiple Parallel-Connection Helmholtz Resonators with Tunable Apertures Prepared by Low-Force Stereolithography of Photopolymer Resin. Yang F; Bi S; Shen X; Li Z; Zhang X; Wang E; Yang X; Peng W; Huang C; Liang P; Sun G Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559802 [TBL] [Abstract][Full Text] [Related]
23. Tunable Broadband Terahertz Waveband Absorbers Based on Fractal Technology of Graphene Metamaterial. Xie T; Chen D; Yang H; Xu Y; Zhang Z; Yang J Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33498504 [TBL] [Abstract][Full Text] [Related]
24. Near Perfect Absorber for Long-Wave Infrared Based on Localized Surface Plasmon Resonance. Sun L; Liu D; Su J; Li X; Zhou S; Wang K; Zhang Q Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500845 [TBL] [Abstract][Full Text] [Related]
25. Transparent Tunable Acoustic Absorber Membrane Using Inkjet-Printed PEDOT:PSS Thin-Film Compliant Electrodes. Shrestha M; Lu Z; Lau GK ACS Appl Mater Interfaces; 2018 Nov; 10(46):39942-39951. PubMed ID: 30365298 [TBL] [Abstract][Full Text] [Related]
26. Thin broadband noise absorption through acoustic reactance control by electro-mechanical coupling without sensor. Zhang Y; Chan YJ; Huang L J Acoust Soc Am; 2014 May; 135(5):2738-45. PubMed ID: 24815257 [TBL] [Abstract][Full Text] [Related]
27. Dynamic sound absorption characteristics of a series piezoelectric acoustic absorber regulated by voltage. Xu H; Kong D J Acoust Soc Am; 2022 Jun; 151(6):3807. PubMed ID: 35778212 [TBL] [Abstract][Full Text] [Related]
28. Large-Scale, Bandwidth-Adjustable, Visible Absorbers by Evaporation and Annealing Process. Long X; Yue W; Su Y; Chen W; Li L Nanoscale Res Lett; 2019 Feb; 14(1):48. PubMed ID: 30756198 [TBL] [Abstract][Full Text] [Related]
29. Broadband tunable terahertz metamaterial absorber having near-perfect absorbance modulation capability based on a patterned vanadium dioxide circular patch. Zhao Q; Qin X; Xu C; Zhou H; Wang BX Appl Opt; 2023 Dec; 62(35):9283-9290. PubMed ID: 38108699 [TBL] [Abstract][Full Text] [Related]
30. A dual ultra-broadband switchable high-performance terahertz absorber based on hybrid graphene and vanadium dioxide. Chen W; Li C; Wang D; Gao S; Zhang C; Guo H; An W; Guo S; Wu G Phys Chem Chem Phys; 2023 Aug; 25(30):20414-20421. PubMed ID: 37466116 [TBL] [Abstract][Full Text] [Related]
31. Optically Transparent Broadband Microwave Absorber by Graphene and Metallic Rings. Ma L; Xu H; Lu Z; Tan J ACS Appl Mater Interfaces; 2022 Apr; 14(15):17727-17738. PubMed ID: 35389630 [TBL] [Abstract][Full Text] [Related]
32. On the acoustic properties of parallel arrangement of multiple micro-perforated panel absorbers with different cavity depths. Wang C; Huang L J Acoust Soc Am; 2011 Jul; 130(1):208-18. PubMed ID: 21786891 [TBL] [Abstract][Full Text] [Related]
33. Design of Multiple Parallel-Arranged Perforated Panel Absorbers for Low Frequency Sound Absorption. Li X; Wu Q; Kang L; Liu B Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31261868 [TBL] [Abstract][Full Text] [Related]
34. A high-performance terahertz absorber based on synthetic-patterned vanadium dioxide metamaterials. Xue X; Chen D; Wang X; Wu J; Ying H; Xu B Phys Chem Chem Phys; 2022 Dec; 25(1):778-787. PubMed ID: 36507907 [TBL] [Abstract][Full Text] [Related]
35. Experimental study of a compact piezoelectric micro-perforated panel absorber with adjustable acoustic property. Kong DY; Xie DY; Tang XN; Hu M; Xu H; Qian YJ J Acoust Soc Am; 2020 Mar; 147(3):EL283. PubMed ID: 32237829 [TBL] [Abstract][Full Text] [Related]
36. Design of metamaterial perfect absorbers in the long-wave infrared region. Wang Y; Li X; Wu S; Hu C; Liu Y Phys Chem Chem Phys; 2023 Dec; 26(1):551-557. PubMed ID: 38086645 [TBL] [Abstract][Full Text] [Related]
37. Thermally tunable broadband metamaterial absorbers based on ionic liquids. Yang F; Zhang C; Zhang A; Zhu X; Xu H; Wang D Opt Express; 2022 Dec; 30(25):45883-45894. PubMed ID: 36522982 [TBL] [Abstract][Full Text] [Related]
38. An Ultrathin Tunable Metamaterial Absorber for Lower Microwave Band Based on Magnetic Nanomaterial. Ning J; Chen K; Zhao W; Zhao J; Jiang T; Feng Y Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35807970 [TBL] [Abstract][Full Text] [Related]
39. Principles of progressive slow-sound and critical coupling condition in broadband sonic black hole absorber. Yu X; Mi Y; Zhai W; Cheng L J Acoust Soc Am; 2023 Nov; 154(5):2988-3003. PubMed ID: 37947395 [TBL] [Abstract][Full Text] [Related]
40. Subwavelength broadband sound absorber based on a composite metasurface. Long H; Liu C; Shao C; Cheng Y; Chen K; Qiu X; Liu X Sci Rep; 2020 Aug; 10(1):13823. PubMed ID: 32796874 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]