These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39136980)
1. Microwave detection technique combined with deep learning algorithm facilitates quantitative analysis of heavy metal Pb residues in edible oils. Deng J; Zhao X; Luo W; Bai X; Xu L; Jiang H J Food Sci; 2024 Sep; 89(9):6005-6015. PubMed ID: 39136980 [TBL] [Abstract][Full Text] [Related]
2. Analysis of heavy metals and minerals in edible vegetable oils produced and marketed in Gondar City, Northwest Ethiopia. Yohannes L; Feleke H; Melaku MS; Amare DE BMC Public Health; 2024 Aug; 24(1):2204. PubMed ID: 39138476 [TBL] [Abstract][Full Text] [Related]
3. Health risk assessment of eight heavy metals in nine varieties of edible vegetable oils consumed in China. Zhu F; Fan W; Wang X; Qu L; Yao S Food Chem Toxicol; 2011 Dec; 49(12):3081-5. PubMed ID: 21964195 [TBL] [Abstract][Full Text] [Related]
4. Spectroscopic determination of metals in palm oils from different stages of the technological process. Szydłowska-Czerniak A; Trokowski K; Karlovits G; Szłyk E J Agric Food Chem; 2013 Mar; 61(9):2276-83. PubMed ID: 23394464 [TBL] [Abstract][Full Text] [Related]
5. Geographical discrimination and adulteration analysis for edible oils using two-dimensional correlation spectroscopy and convolutional neural networks (CNNs). Liu Y; Yao L; Xia Z; Gao Y; Gong Z Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 246():118973. PubMed ID: 33017793 [TBL] [Abstract][Full Text] [Related]
6. Rapid assessment of heavy metal accumulation capability of Sedum alfredii using hyperspectral imaging and deep learning. Lu Y; Nie L; Guo X; Pan T; Chen R; Liu X; Li X; Li T; Liu F Ecotoxicol Environ Saf; 2024 Sep; 282():116704. PubMed ID: 38996646 [TBL] [Abstract][Full Text] [Related]
7. Ultrasound-assisted extraction of Pb, Cd, Cr, Mn, Fe, Cu, Zn from edible oils with tetramethylammonium hydroxide and EDTA followed by determination using graphite furnace atomic absorption spectrometer. Manjusha R; Shekhar R; Kumar SJ Food Chem; 2019 Oct; 294():384-389. PubMed ID: 31126478 [TBL] [Abstract][Full Text] [Related]
8. Application of Raman spectroscopy in the rapid detection of waste cooking oil. Jin H; Li H; Yin Z; Zhu Y; Lu A; Zhao D; Li C Food Chem; 2021 Nov; 362():130191. PubMed ID: 34082292 [TBL] [Abstract][Full Text] [Related]
9. Raman spectroscopy combined with multiple one-dimensional deep learning models for simultaneous quantification of multiple components in blended olive oil. Wu X; Zhang X; Du Z; Yang D; Xu B; Ma R; Luo H; Liu H; Zhang Y Food Chem; 2024 Jan; 431():137109. PubMed ID: 37582325 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical investigation of edible oils: Experimentation, electrical signatures, and a supervised learning-case study of adulterated peanut oils. Patil AC; Fernández la Villa A; Mugilvannan AK; Elejalde U Food Chem; 2023 Feb; 402():134143. PubMed ID: 36148762 [TBL] [Abstract][Full Text] [Related]
11. Combining spatial autocorrelation with artificial intelligence models to estimate spatial distribution and risks of heavy metal pollution in agricultural soils. Günal E; Budak M; Kılıç M; Cemek B; Sırrı M Environ Monit Assess; 2023 Jan; 195(2):317. PubMed ID: 36680597 [TBL] [Abstract][Full Text] [Related]
12. Deep learning model based on urban multi-source data for predicting heavy metals (Cu, Zn, Ni, Cr) in industrial sewer networks. Jiang Y; Li C; Song H; Wang W J Hazard Mater; 2022 Jun; 432():128732. PubMed ID: 35334271 [TBL] [Abstract][Full Text] [Related]
13. Snow Parameters Inversion from Passive Microwave Remote Sensing Measurements by Deep Convolutional Neural Networks. Yao H; Zhang Y; Jiang L; Ewe HT; Ng M Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808266 [TBL] [Abstract][Full Text] [Related]
14. A unique quantitative method of acid value of edible oils and studying the impact of heating on edible oils by UV-Vis spectrometry. Zhang W; Li N; Feng Y; Su S; Li T; Liang B Food Chem; 2015 Oct; 185():326-32. PubMed ID: 25952875 [TBL] [Abstract][Full Text] [Related]
15. Flame and graphite furnace atomic absorption spectrometry for trace element determination in vegetable oils, margarine and butter after sample emulsification. Ieggli CV; Bohrer D; Do Nascimento PC; De Carvalho LM Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2011 May; 28(5):640-8. PubMed ID: 21424962 [TBL] [Abstract][Full Text] [Related]
16. Integration of glutathione disulfide-mediated extraction and capillary electrophoresis for determination of Cd(II) and Pb(II) in edible oils. Tang Z; Feng X; Tian H; Wang J; Qin W Food Chem; 2024 Nov; 457():140146. PubMed ID: 38901338 [TBL] [Abstract][Full Text] [Related]
17. Determination of lead, cadmium and mercury in microwave-digested foodstuffs by RP-HPLC with an on-line enrichment technique. Huang Z; Yang G; Hu Q; Yin J Anal Sci; 2003 Feb; 19(2):255-8. PubMed ID: 12608755 [TBL] [Abstract][Full Text] [Related]
18. Detection of lead content in oilseed rape leaves and roots based on deep transfer learning and hyperspectral imaging technology. Zhou X; Zhao C; Sun J; Yao K; Xu M Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 290():122288. PubMed ID: 36608517 [TBL] [Abstract][Full Text] [Related]
19. Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce. Zhou X; Sun J; Tian Y; Lu B; Hang Y; Chen Q Food Chem; 2020 Aug; 321():126503. PubMed ID: 32240914 [TBL] [Abstract][Full Text] [Related]
20. Non-destructive Detection of Fatty Acid Content of Camellia Seed Based on Hyperspectral. Yang X; Jiang P; Luo Y; Shi Y J Oleo Sci; 2023 Jan; 72(1):69-77. PubMed ID: 36504187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]