These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 39136985)
21. Exploiting leaf starch synthesis as a transient sink to elevate photosynthesis, plant productivity and yields. Gibson K; Park JS; Nagai Y; Hwang SK; Cho YC; Roh KH; Lee SM; Kim DH; Choi SB; Ito H; Edwards GE; Okita TW Plant Sci; 2011 Sep; 181(3):275-81. PubMed ID: 21763538 [TBL] [Abstract][Full Text] [Related]
22. Enhanced Sucrose Loading Improves Rice Yield by Increasing Grain Size. Wang L; Lu Q; Wen X; Lu C Plant Physiol; 2015 Dec; 169(4):2848-62. PubMed ID: 26504138 [TBL] [Abstract][Full Text] [Related]
23. Chlorophyll Composition, Chlorophyll Fluorescence, and Grain Yield Change in Lin W; Guo X; Pan X; Li Z Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30262721 [TBL] [Abstract][Full Text] [Related]
24. Rice SPX-Major Facility Superfamily3, a Vacuolar Phosphate Efflux Transporter, Is Involved in Maintaining Phosphate Homeostasis in Rice. Wang C; Yue W; Ying Y; Wang S; Secco D; Liu Y; Whelan J; Tyerman SD; Shou H Plant Physiol; 2015 Dec; 169(4):2822-31. PubMed ID: 26424157 [TBL] [Abstract][Full Text] [Related]
25. OsPAP26 Encodes a Major Purple Acid Phosphatase and Regulates Phosphate Remobilization in Rice. Gao W; Lu L; Qiu W; Wang C; Shou H Plant Cell Physiol; 2017 May; 58(5):885-892. PubMed ID: 28371895 [TBL] [Abstract][Full Text] [Related]
26. The transcription factor OsWRKY10 inhibits phosphate uptake via suppressing OsPHT1;2 expression under phosphate-replete conditions in rice. Wang S; Xu T; Chen M; Geng L; Huang Z; Dai X; Qu H; Zhang J; Li H; Gu M; Xu G J Exp Bot; 2023 Feb; 74(3):1074-1089. PubMed ID: 36402551 [TBL] [Abstract][Full Text] [Related]
27. The Rice Phosphate Transporter Protein OsPT8 Regulates Disease Resistance and Plant Growth. Dong Z; Li W; Liu J; Li L; Pan S; Liu S; Gao J; Liu L; Liu X; Wang GL; Dai L Sci Rep; 2019 Apr; 9(1):5408. PubMed ID: 30931952 [TBL] [Abstract][Full Text] [Related]
28. A Synthetic Photorespiratory Shortcut Enhances Photosynthesis to Boost Biomass and Grain Yield in Rice. Wang LM; Shen BR; Li BD; Zhang CL; Lin M; Tong PP; Cui LL; Zhang ZS; Peng XX Mol Plant; 2020 Dec; 13(12):1802-1815. PubMed ID: 33075506 [TBL] [Abstract][Full Text] [Related]
29. OsαCA1 Affects Photosynthesis, Yield Potential, and Water Use Efficiency in Rice. He Y; Duan W; Xue B; Cong X; Sun P; Hou X; Liang YK Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982632 [TBL] [Abstract][Full Text] [Related]
30. Trehalose 6-Phosphate Regulates Photosynthesis and Assimilate Partitioning in Reproductive Tissue. Oszvald M; Primavesi LF; Griffiths CA; Cohn J; Basu SS; Nuccio ML; Paul MJ Plant Physiol; 2018 Apr; 176(4):2623-2638. PubMed ID: 29437777 [TBL] [Abstract][Full Text] [Related]
31. Closer vein spacing by ectopic expression of nucleotide-binding and leucine-rich repeat proteins in rice leaves. Lo SF; Chatterjee J; Biswal AK; Liu IL; Chang YP; Chen PJ; Wanchana S; Elmido-Mabilangan A; Nepomuceno RA; Bandyopadhyay A; Hsing YI; Quick WP Plant Cell Rep; 2022 Feb; 41(2):319-335. PubMed ID: 34837515 [TBL] [Abstract][Full Text] [Related]
32. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Ambavaram MM; Basu S; Krishnan A; Ramegowda V; Batlang U; Rahman L; Baisakh N; Pereira A Nat Commun; 2014 Oct; 5():5302. PubMed ID: 25358745 [TBL] [Abstract][Full Text] [Related]
33. Triose phosphate utilization in leaves is modulated by whole-plant sink-source ratios and nitrogen budgets in rice. Zhou Z; Zhang Z; van der Putten PEL; Fabre D; Dingkuhn M; Struik PC; Yin X J Exp Bot; 2023 Nov; 74(21):6692-6707. PubMed ID: 37642225 [TBL] [Abstract][Full Text] [Related]
35. Tissue specific transcript profiling of wheat phosphate transporter genes and its association with phosphate allocation in grains. Shukla V; Kaur M; Aggarwal S; Bhati KK; Kaur J; Mantri S; Pandey AK Sci Rep; 2016 Dec; 6():39293. PubMed ID: 27995999 [TBL] [Abstract][Full Text] [Related]
36. Two ABCI family transporters, OsABCI15 and OsABCI16, are involved in grain-filling in rice. Ma B; Cao X; Li X; Bian Z; Zhang QQ; Fang Z; Liu J; Li Q; Liu Q; Zhang L; He Z J Genet Genomics; 2024 May; 51(5):492-506. PubMed ID: 37913986 [TBL] [Abstract][Full Text] [Related]
37. OsWRKY21 and OsWRKY108 function redundantly to promote phosphate accumulation through maintaining the constitutive expression of OsPHT1;1 under phosphate-replete conditions. Zhang J; Gu M; Liang R; Shi X; Chen L; Hu X; Wang S; Dai X; Qu H; Li H; Xu G New Phytol; 2021 Feb; 229(3):1598-1614. PubMed ID: 32936937 [TBL] [Abstract][Full Text] [Related]
38. OsPht1;8, a phosphate transporter, is involved in auxin and phosphate starvation response in rice. Jia H; Zhang S; Wang L; Yang Y; Zhang H; Cui H; Shao H; Xu G J Exp Bot; 2017 Nov; 68(18):5057-5068. PubMed ID: 29036625 [TBL] [Abstract][Full Text] [Related]
39. Hexavalent chromium uptake in rice (Oryza sativa L.) mediated by sulfate and phosphate transporters OsSultr1;2 and OsPht1;1. Li J; Xie W; Qi H; Sun S; Deng T; Tang Y; Qiu R J Hazard Mater; 2024 Oct; 478():135559. PubMed ID: 39154470 [TBL] [Abstract][Full Text] [Related]
40. Function of wheat phosphate transporter gene TaPHT2;1 in Pi translocation and plant growth regulation under replete and limited Pi supply conditions. Guo C; Zhao X; Liu X; Zhang L; Gu J; Li X; Lu W; Xiao K Planta; 2013 Apr; 237(4):1163-78. PubMed ID: 23314830 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]