These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 39137)

  • 1. Synthesis, properties and biological activity of tritiated N-benzylamidino-3,5-diamino-6-chloro-pyrazine carboxamide -- a new ligand for epithelial sodium channels.
    Cuthbert AW; Edwardson JM
    J Pharm Pharmacol; 1979 Jun; 31(6):382-6. PubMed ID: 39137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of some pyrazinecarboxamides on sodium transport in frog skin.
    Cuthbert AW; Fanelli GM
    Br J Pharmacol; 1978 May; 63(1):139-49. PubMed ID: 647157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-activity relationship of amiloride analogs as blockers of epithelial Na channels: I. Pyrazine-ring modifications.
    Li JH; Cragoe EJ; Lindemann B
    J Membr Biol; 1985; 83(1-2):45-56. PubMed ID: 2582124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of the density of sodium entry sites in frog skin epithelium from the uptake of [3H]benzamil.
    Aceves J; Cuthbert AW; Edwardson JM
    J Physiol; 1979 Oct; 295():477-90. PubMed ID: 316450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new ligand for epithelial sodium channels [proceedings].
    Aceves J; Cuthbert AW; Edwardson JM
    J Physiol; 1978 Sep; 282():24P-26P. PubMed ID: 722526
    [No Abstract]   [Full Text] [Related]  

  • 6. Sodium entry step in transporting epithelia: results of ligand-binding studies.
    Cuthbert AW
    Soc Gen Physiol Ser; 1981; 36():181-95. PubMed ID: 6269227
    [No Abstract]   [Full Text] [Related]  

  • 7. Chemical stimulation of Na transport through amiloride-blockable channels of frog skin epithelium.
    Li JH; Lindemann B
    J Membr Biol; 1983; 75(3):179-92. PubMed ID: 6313927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoaffinity labeling of the epithelial sodium channel.
    Kleyman TR; Yulo T; Ashbaugh C; Landry D; Cragoe E; Karlin A; Al-Awqati Q
    J Biol Chem; 1986 Feb; 261(6):2839-43. PubMed ID: 2419323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of synaptosomal membrane Na+-Ca2+ exchange transport by amiloride and amiloride analogues.
    Schellenberg GD; Anderson L; Cragoe EJ; Swanson PD
    Mol Pharmacol; 1985 May; 27(5):537-43. PubMed ID: 3990677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanism of the amiloride-sodium entry site interaction in anuran skin epithelia.
    Benos DJ; Mandel LJ; Balaban RS
    J Gen Physiol; 1979 Mar; 73(3):307-26. PubMed ID: 108355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of methylbromoamiloride, a potential biochemical probe of epithelial Na+ channels.
    Lazorick K; Miller C; Sariban-Sohraby S; Benos D
    J Membr Biol; 1985; 86(1):69-77. PubMed ID: 2413211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-activity relationship of amiloride analogs as blockers of epithelial Na channels: II. Side-chain modifications.
    Li JH; Cragoe EJ; Lindemann B
    J Membr Biol; 1987; 95(2):171-85. PubMed ID: 2437309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation of transepithelial sodium and chloride transport by ascorbic acid. Induction of Na+ channels is inhibited by amiloride.
    McGahan MC; Bentley PJ
    Biochim Biophys Acta; 1982 Jul; 689(2):385-92. PubMed ID: 6288098
    [No Abstract]   [Full Text] [Related]  

  • 14. Importance of guanidinium groups of blocking sodium channels in epithelia.
    Cuthbert AW
    Mol Pharmacol; 1976 Nov; 12(6):945-57. PubMed ID: 12462
    [No Abstract]   [Full Text] [Related]  

  • 15. Multicompartment kinetic analysis of the amiloride block of Na+ fluxes in frog skin.
    Huf EG; Howell JR; Baskerville FB
    Pflugers Arch; 1980 Jun; 385(3):243-51. PubMed ID: 6250129
    [No Abstract]   [Full Text] [Related]  

  • 16. Amiloride-sensitive epithelial Na+ channels reconstituted into planar lipid bilayer membranes.
    Sariban-Sohraby S; Latorre R; Burg M; Olans L; Benos D
    Nature; 1984 Mar 1-7; 308(5954):80-2. PubMed ID: 6322006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competitive blocking of apical sodium channels in epithelia.
    Frehland E; Hoshiko T; Machlup S
    Biochim Biophys Acta; 1983 Aug; 732(3):636-46. PubMed ID: 6307378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics and regulatory mechanisms of the amiloride-blockable Na+ channel.
    Garty H; Benos DJ
    Physiol Rev; 1988 Apr; 68(2):309-73. PubMed ID: 2451832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saturation behavior of single, amiloride-sensitive Na+ channels in planar lipid bilayers.
    Olans L; Sariban-Sohraby S; Benos DJ
    Biophys J; 1984 Dec; 46(6):831-5. PubMed ID: 6097320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amiloride and the sodium channel.
    Cuthbert AW; Shum WK
    Naunyn Schmiedebergs Arch Pharmacol; 1974; 281(3):261-9. PubMed ID: 4275046
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.