These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 39137020)

  • 41. High-efficiency and sustainable sodium humate aerogel evaporator for solar steam generation.
    Zhao S; Liu H; Jiang Y; Wang F; Su Z
    J Colloid Interface Sci; 2024 Mar; 657():858-869. PubMed ID: 38091909
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fabrication of ATP/PEG/MnO
    Mu W; Yu Y; Sun H; Zhu Z; Li J; Liang W
    J Colloid Interface Sci; 2023 Oct; 648():916-924. PubMed ID: 37329603
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ionic Liquid-Assisted Alignment of Corn Straw Microcrystalline Cellulose Aerogels with Low Tortuosity Channels for Salt-Assistance Solar Steam Evaporators.
    Li J; Zhou X; Jing Y; Sun H; Zhu Z; Liang W; Li A
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):12181-12190. PubMed ID: 33685116
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dual-Functional Graphene Oxide-Based Photothermal Materials with Aligned Channels and Oleophobicity for Efficient Solar Steam Generation.
    Chen L; Wei J; Tian Q; Han Z; Li L; Meng S; Hasi QM
    Langmuir; 2021 Aug; 37(33):10191-10199. PubMed ID: 34370488
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pickering Emulsion Templated 3D Cylindrical Open Porous Aerogel for Highly Efficient Solar Steam Generation.
    Chen Y; Hao J; Xu J; Hu Z; Bao H; Xu H
    Small; 2023 Nov; 19(48):e2303908. PubMed ID: 37507818
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Photothermal Conversion Material Derived from Used Cigarette Filters for Solar Steam Generation.
    Sun H; Li Y; Zhu Z; Mu P; Wang F; Liang W; Ma C; Li A
    ChemSusChem; 2019 Sep; 12(18):4257-4264. PubMed ID: 31336029
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Salt-rejecting 3D cone flowing evaporator based on bilayer photothermal paper for high-performance solar seawater desalination.
    Chen YQ; Zhu YJ; Wang ZY; Yu HP; Xiong ZC
    J Colloid Interface Sci; 2024 Apr; 660():370-380. PubMed ID: 38244503
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Nature-Inspired Monolithic Integrated Cellulose Aerogel-Based Evaporator for Efficient Solar Desalination.
    Liu K; Zhang W; Cheng H; Luo L; Wang B; Mao Z; Sui X; Feng X
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10612-10622. PubMed ID: 33591710
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Clay-based aerogel combined with CuS for solar-driven interfacial steam generation and desalination.
    Zhao S; Wei H; Zhang X; Wang F; Su Z
    J Colloid Interface Sci; 2024 Jan; 653(Pt B):1504-1513. PubMed ID: 37804618
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bioinspired Hydrophilic-Hydrophobic Janus Composites for Highly Efficient Solar Steam Generation.
    Qin Z; Sun H; Tang Y; Yin S; Yang L; Xu M; Liu Z
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):19467-19475. PubMed ID: 33863231
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biomass-Derived Bilayer Solar Evaporator with Enhanced Energy Utilization for High-Efficiency Water Generation.
    Yu F; Guo Z; Xu Y; Chen Z; Irshad MS; Qian J; Mei T; Wang X
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57155-57164. PubMed ID: 33295750
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cost-Effective 3D-Printed Bionic Hydrogel Evaporator for Stable Solar Desalination.
    Zhang S; Li M; Jiang C; Zhu D; Zhang Z
    Adv Sci (Weinh); 2024 May; 11(17):e2308665. PubMed ID: 38342614
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Janus Biopolymer Sponge with Porous Structure Based on Water Hyacinth Petiole for Efficient Solar Steam Generation.
    Li J; Chen S; Li C; Cao M; Mu J; Nawaz H; Ling Z; Xu F
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012457
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bioinspired Self-Standing, Self-Floating 3D Solar Evaporators Breaking the Trade-Off between Salt Cycle and Heat Localization for Continuous Seawater Desalination.
    Liu H; Chen B; Chen Y; Zhou M; Tian F; Li Y; Jiang J; Zhai W
    Adv Mater; 2023 Jun; 35(24):e2301596. PubMed ID: 37037047
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Wood-Graphene Oxide Composite for Highly Efficient Solar Steam Generation and Desalination.
    Liu KK; Jiang Q; Tadepalli S; Raliya R; Biswas P; Naik RR; Singamaneni S
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7675-7681. PubMed ID: 28151641
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A photothermal reservoir for highly efficient solar steam generation without bulk water.
    Wu X; Gao T; Han C; Xu J; Owens G; Xu H
    Sci Bull (Beijing); 2019 Nov; 64(21):1625-1633. PubMed ID: 36659575
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Boosting solar steam generation by structure enhanced energy management.
    Wang Y; Wu X; Shao B; Yang X; Owens G; Xu H
    Sci Bull (Beijing); 2020 Aug; 65(16):1380-1388. PubMed ID: 36659217
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Porous reduced graphene oxide/nickel foam for highly efficient solar steam generation.
    Shan X; Lin Y; Zhao A; Di Y; Hu Y; Guo Y; Gan Z
    Nanotechnology; 2019 Oct; 30(42):425403. PubMed ID: 31295739
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A water supply tunable bilayer evaporator for high-quality solar vapor generation.
    Zhang X; Li T; Liao W; Chen D; Deng Z; Liu X; Shang B
    Nanoscale; 2022 Jun; 14(21):7913-7918. PubMed ID: 35593223
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metal-phenolic network coated cellulose foams for solar-driven clean water production.
    Zou Y; Wu X; Li H; Yang L; Zhang C; Wu H; Li Y; Xiao L
    Carbohydr Polym; 2021 Feb; 254():117404. PubMed ID: 33357892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.