These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 39137123)
21. Prominent enhancement of stability under high current density of LiFePO Kim J; Song S; Lee CS; Lee M; Bae J J Colloid Interface Sci; 2023 Nov; 650(Pt B):1958-1965. PubMed ID: 37517195 [TBL] [Abstract][Full Text] [Related]
22. Electrolyte Design Enables Rechargeable LiFePO4/Graphite Batteries from -80°C to 80°C. Li Z; Yao YX; Zheng M; Sun S; Yang Y; Xiao Y; Xu L; Jin CB; Yue XY; Song T; Wu P; Yan C; Zhang Q Angew Chem Int Ed Engl; 2024 Jul; ():e202409409. PubMed ID: 39008227 [TBL] [Abstract][Full Text] [Related]
23. Lithium fluorosulfonate-induced low-resistance interphase boosting low-temperature performance of commercial graphite/LiFePO Zhang Z; Hu J; Hu Y; Wang H; Hu H J Colloid Interface Sci; 2024 Sep; 669():305-313. PubMed ID: 38718584 [TBL] [Abstract][Full Text] [Related]
24. Reduced Graphene Oxide Coating LiFePO Zhang Q; Zhou Y; Tong Y; Chi Y; Liu R; Dai C; Li Z; Cui Z; Liang Y; Tan Y Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139376 [TBL] [Abstract][Full Text] [Related]
25. Boron and Nitrogen Codoped Carbon Layers of LiFePO4 Improve the High-Rate Electrochemical Performance for Lithium Ion Batteries. Zhang J; Nie N; Liu Y; Wang J; Yu F; Gu J; Li W ACS Appl Mater Interfaces; 2015 Sep; 7(36):20134-43. PubMed ID: 26305802 [TBL] [Abstract][Full Text] [Related]
26. Direct Regeneration of Degraded LiFePO Li C; Gong R; Zhang Y; Meng Q; Dong P Molecules; 2024 Jul; 29(14):. PubMed ID: 39064918 [TBL] [Abstract][Full Text] [Related]
27. A Long-Life Lithium Ion Battery with Enhanced Electrode/Electrolyte Interface by Using an Ionic Liquid Solution. Elia GA; Ulissi U; Mueller F; Reiter J; Tsiouvaras N; Sun YK; Scrosati B; Passerini S; Hassoun J Chemistry; 2016 May; 22(20):6808-14. PubMed ID: 26990320 [TBL] [Abstract][Full Text] [Related]
29. Design of LiFePO Huang CY; Kuo TR; Yougbaré S; Lin LY J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1457-1465. PubMed ID: 34598027 [TBL] [Abstract][Full Text] [Related]
30. Electrochemical Analysis of the Carbon-Encapsulated Lithium Iron Phosphate Nanochains and Their High-Temperature Conductivity Profiles. Abhilash KP; Selvin PC; Nalini B; Xia H; Adams S; Reddy MV ACS Omega; 2018 Jun; 3(6):6446-6455. PubMed ID: 31458825 [TBL] [Abstract][Full Text] [Related]
31. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery. Qiu L; Shao Z; Wang D; Wang W; Wang F; Wang J Carbohydr Polym; 2014 Oct; 111():588-91. PubMed ID: 25037391 [TBL] [Abstract][Full Text] [Related]
32. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries. Wang B; Xu B; Liu T; Liu P; Guo C; Wang S; Wang Q; Xiong Z; Wang D; Zhao XS Nanoscale; 2014 Jan; 6(2):986-95. PubMed ID: 24287590 [TBL] [Abstract][Full Text] [Related]
33. LiFePO₄-Graphene Composites as High-Performance Cathodes for Lithium-Ion Batteries: The Impact of Size and Morphology of Graphene. Fu Y; Wei Q; Zhang G; Zhong Y; Moghimian N; Tong X; Sun S Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30871139 [TBL] [Abstract][Full Text] [Related]
34. LiFePO You L; Tang J; Wu Q; Zhang C; Liu D; Huang T; Yu A RSC Adv; 2020 Oct; 10(62):37916-37922. PubMed ID: 35515173 [TBL] [Abstract][Full Text] [Related]
35. Effect of Electrolyte Concentration on the Electrochemical Performance of Spray Deposited LiFePO Floraki C; Androulidaki M; Spanakis E; Vernardou D Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368280 [TBL] [Abstract][Full Text] [Related]
36. Safety, high-performing and effects of the N/P ratio of a solid lithium ion battery using PEGDME based polymer electrolytes. Jeon I; Hong WG; Yoon S; Choi Y; Kim HJ; Kim JP Heliyon; 2023 Feb; 9(2):e13292. PubMed ID: 36816273 [TBL] [Abstract][Full Text] [Related]
37. A Multifunctional Amino Acid Enables Direct Recycling of Spent LiFePO Tang D; Ji G; Wang J; Liang Z; Chen W; Ji H; Ma J; Liu S; Zhuang Z; Zhou G Adv Mater; 2024 Feb; 36(5):e2309722. PubMed ID: 38010273 [TBL] [Abstract][Full Text] [Related]
38. Designing a hybrid electrode toward high energy density with a staged Li Hao J; Yang F; Zhang S; He H; Xia G; Liu Y; Didier C; Liu T; Pang WK; Peterson VK; Lu J; Guo Z Proc Natl Acad Sci U S A; 2020 Feb; 117(6):2815-2823. PubMed ID: 31996477 [TBL] [Abstract][Full Text] [Related]
39. Electrocatalytic Decomposition of Lithium Oxalate-Based Composite Microspheres as a Prelithiation Additive in Lithium-Ion Batteries. Liu J; Lin J; Yin Z; Tong Z; Liu J; Wang Z; Zhou Y; Li J Molecules; 2024 Jun; 29(13):. PubMed ID: 38998928 [TBL] [Abstract][Full Text] [Related]
40. Life Cycle of LiFePO Rostami H; Valio J; Tynjälä P; Lassi U; Suominen P Chemphyschem; 2024 Dec; 25(24):e202400459. PubMed ID: 39264359 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]