These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 39137320)
1. A Flexible Memristor Based on CsPbCl Chen T; Ran Q; Wang Y; Zhang W; Tang X; Han Y; Zhang K J Phys Chem Lett; 2024 Aug; 15(33):8555-8561. PubMed ID: 39137320 [TBL] [Abstract][Full Text] [Related]
2. Light-Mediated Multilevel Flexible High-Efficiency Perovskite Resistive Switching Memory Based on Mn:CsPbCl Ran Q; Wang Y; Zhang W; Xu N; Chen W; Tang X J Phys Chem Lett; 2024 Feb; 15(6):1572-1578. PubMed ID: 38301605 [TBL] [Abstract][Full Text] [Related]
3. Achieving adjustable digital-to-analog conversion in memristors with embedded Cs Wang Y; Xu N; Yuan Y; Zhang W; Huang Q; Tang X; Qi F Nanoscale; 2023 Apr; 15(16):7344-7351. PubMed ID: 37038924 [TBL] [Abstract][Full Text] [Related]
4. Flexible artificial nociceptor using a biopolymer-based forming-free memristor. Ge J; Zhang S; Liu Z; Xie Z; Pan S Nanoscale; 2019 Apr; 11(14):6591-6601. PubMed ID: 30656324 [TBL] [Abstract][Full Text] [Related]
5. Halide Perovskites-Based Diffusive Memristors for Artificial Mechano-Nociceptive System. Im IH; Baek JH; Kim SJ; Kim J; Park SH; Kim JY; Yang JJ; Jang HW Adv Mater; 2024 Jan; 36(1):e2307334. PubMed ID: 37708845 [TBL] [Abstract][Full Text] [Related]
6. Flexible Organic-Inorganic Halide Perovskite-Based Diffusive Memristor for Artificial Nociceptors. Patil H; Kim H; Kadam KD; Rehman S; Patil SA; Aziz J; Dongale TD; Ali Sheikh Z; Khalid Rahmani M; Khan MF; Kim DK ACS Appl Mater Interfaces; 2023 Mar; 15(10):13238-13248. PubMed ID: 36867070 [TBL] [Abstract][Full Text] [Related]
7. Nonvolatile resistive switching and synaptic characteristics of lead-free all-inorganic perovskite-based flexible memristive devices for neuromorphic systems. Siddik A; Haldar PK; Paul T; Das U; Barman A; Roy A; Sarkar PK Nanoscale; 2021 May; 13(19):8864-8874. PubMed ID: 33949417 [TBL] [Abstract][Full Text] [Related]
8. Opportunity of the Lead-Free All-Inorganic Cs Zeng F; Guo Y; Hu W; Tan Y; Zhang X; Feng J; Tang X ACS Appl Mater Interfaces; 2020 May; 12(20):23094-23101. PubMed ID: 32336082 [TBL] [Abstract][Full Text] [Related]
9. Flexible Artificial Ag NPs:a-SiC Zuo Z; Zhou C; Ma Z; Huang Y; Chen L; Li W; Xu J; Chen K Nanomaterials (Basel); 2024 Sep; 14(18):. PubMed ID: 39330632 [TBL] [Abstract][Full Text] [Related]
10. Memristors with Nociceptor Characteristics Using Threshold Switching of Pt/HfO Park M; Jeon B; Park J; Kim S Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500829 [TBL] [Abstract][Full Text] [Related]
11. Highly flexible and stable resistive switching devices based on WS Lee JH; Wu C; Sung S; An H; Kim TW Sci Rep; 2019 Dec; 9(1):19316. PubMed ID: 31848387 [TBL] [Abstract][Full Text] [Related]
12. Solution-processed light-induced multilevel non-volatile wearable memory device based on CsPb Paul T; Sarkar PK; Maiti S; Sahoo A; Chattopadhyay KK Dalton Trans; 2022 Mar; 51(10):3864-3874. PubMed ID: 35171172 [TBL] [Abstract][Full Text] [Related]
13. Transition from synaptic simulation to nonvolatile resistive switching behavior based on an Ag/Ag:ZnO/Pt memristor. Huang Y; Yu J; Kong Y; Wang X RSC Adv; 2022 Nov; 12(52):33634-33640. PubMed ID: 36505707 [TBL] [Abstract][Full Text] [Related]
14. Piezo-Acoustic Resistive Switching Behaviors in High-Performance Organic-Inorganic Hybrid Perovskite Memristors. Liu Z; Cheng P; Kang R; Zhou J; Wang X; Zhao X; Zhao J; Liu D; Zuo Z Adv Sci (Weinh); 2024 Mar; 11(10):e2308383. PubMed ID: 38225698 [TBL] [Abstract][Full Text] [Related]
15. Control-Etched Ti Gosai J; Patel M; Liu L; Lokhandwala A; Thakkar P; Chee MY; Jain M; Lew WS; Chaudhari N; Solanki A ACS Appl Mater Interfaces; 2024 Apr; 16(14):17821-17831. PubMed ID: 38536948 [TBL] [Abstract][Full Text] [Related]
16. High-Performance Flexible Polymer Memristor Based on Stable Filamentary Switching. Zhang X; Wu C; Lv Y; Zhang Y; Liu W Nano Lett; 2022 Sep; 22(17):7246-7253. PubMed ID: 35984717 [TBL] [Abstract][Full Text] [Related]
17. Cobalt-doped zinc oxide based memristors with nociceptor characteristics for bio-inspired technology. Rehman NU; Ullah A; Mahmood MA; Rahman N; Sohail M; Iqbal S; Juraev N; Althubeiti K; Al Otaibi S; Khan R RSC Adv; 2024 Apr; 14(17):11797-11810. PubMed ID: 38617576 [TBL] [Abstract][Full Text] [Related]
18. Low-power flexible organic memristor based on PEDOT:PSS/pentacene heterojunction for artificial synapse. Luo X; Ming J; Gao J; Zhuang J; Fu J; Ren Z; Ling H; Xie L Front Neurosci; 2022; 16():1016026. PubMed ID: 36161163 [TBL] [Abstract][Full Text] [Related]
19. A Bioinspired Artificial Injury Response System Based on a Robust Polymer Memristor to Mimic a Sense of Pain, Sign of Injury, and Healing. Xu X; Cho EJ; Bekker L; Talin AA; Lee E; Pascall AJ; Worsley MA; Zhou J; Cook CC; Kuntz JD; Cho S; Orme CA Adv Sci (Weinh); 2022 May; 9(15):e2200629. PubMed ID: 35338600 [TBL] [Abstract][Full Text] [Related]
20. An Artificial Universal Tactile Nociceptor Based on 2D Polymer Film Memristor Arrays with Tunable Resistance Switching Behaviors. Du S; Song Y; Yuan J; Hao R; Wu L; Lei S; Hu W ACS Appl Mater Interfaces; 2024 Jul; 16(26):33907-33916. PubMed ID: 38889049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]