These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 39137819)
1. Functional co-delivery nanoliposomes based on improving hypoxia for increasing photoimmunotherapy efficacy of cold tumors. Wang T; Chen S; Sun J; Li K Int J Pharm; 2024 Sep; 663():124581. PubMed ID: 39137819 [TBL] [Abstract][Full Text] [Related]
3. Immune/Hypoxic Tumor Microenvironment Regulation-Enhanced Photodynamic Treatment Realized by pH-Responsive Phase Transition-Targeting Nanobubbles. Zhao M; Yang X; Fu H; Chen C; Zhang Y; Wu Z; Duan Y; Sun Y ACS Appl Mater Interfaces; 2021 Jul; 13(28):32763-32779. PubMed ID: 34235912 [TBL] [Abstract][Full Text] [Related]
4. Size-optimized nuclear-targeting phototherapy enhances the type I interferon response for "cold" tumor immunotherapy. Zhang X; Yi C; Zhang L; Zhu X; He Y; Lu H; Li Y; Tang Y; Zhao W; Chen G; Wang C; Huang S; Ouyang G; Yu D Acta Biomater; 2023 Mar; 159():338-352. PubMed ID: 36669551 [TBL] [Abstract][Full Text] [Related]
5. An intelligent dual stimuli-responsive photosensitizer delivery system with O Zhao H; Li L; Zheng C; Hao Y; Niu M; Hu Y; Chang J; Zhang Z; Wang L Colloids Surf B Biointerfaces; 2018 Jul; 167():299-309. PubMed ID: 29679806 [TBL] [Abstract][Full Text] [Related]
6. Activating Iterative Revolutions of the Cancer-Immunity Cycle in Hypoxic Tumors with a Smart Nano-Regulator. Ding J; Lu Y; Zhao X; Long S; Du J; Sun W; Fan J; Peng X Adv Mater; 2024 Jul; 36(29):e2400196. PubMed ID: 38734875 [TBL] [Abstract][Full Text] [Related]
7. A tumor microenvironment responsive biodegradable CaCO Liu Y; Pan Y; Cao W; Xia F; Liu B; Niu J; Alfranca G; Sun X; Ma L; de la Fuente JM; Song J; Ni J; Cui D Theranostics; 2019; 9(23):6867-6884. PubMed ID: 31660074 [TBL] [Abstract][Full Text] [Related]
8. Multifunctional Immunoliposomes Combining Catalase and PD-L1 Antibodies Overcome Tumor Hypoxia and Enhance Immunotherapeutic Effects Against Melanoma. Hei Y; Teng B; Zeng Z; Zhang S; Li Q; Pan J; Luo Z; Xiong C; Wei S Int J Nanomedicine; 2020; 15():1677-1691. PubMed ID: 32214807 [TBL] [Abstract][Full Text] [Related]
9. In situ immunogenic clearance induced by a combination of photodynamic therapy and rho-kinase inhibition sensitizes immune checkpoint blockade response to elicit systemic antitumor immunity against intraocular melanoma and its metastasis. Kim S; Kim SA; Nam GH; Hong Y; Kim GB; Choi Y; Lee S; Cho Y; Kwon M; Jeong C; Kim S; Kim IS J Immunother Cancer; 2021 Jan; 9(1):. PubMed ID: 33479026 [TBL] [Abstract][Full Text] [Related]
10. Smart Nanoreactors for pH-Responsive Tumor Homing, Mitochondria-Targeting, and Enhanced Photodynamic-Immunotherapy of Cancer. Yang G; Xu L; Xu J; Zhang R; Song G; Chao Y; Feng L; Han F; Dong Z; Li B; Liu Z Nano Lett; 2018 Apr; 18(4):2475-2484. PubMed ID: 29565139 [TBL] [Abstract][Full Text] [Related]
11. Combination of photosensitizer and immune checkpoint inhibitors for improving the efficacy of tumor immunotherapy. Li K; Yu H; Bao Z; Xu L; Zhang H; Wang T; Yu L; Yuan Y Int J Pharm; 2022 Dec; 629():122384. PubMed ID: 36372138 [TBL] [Abstract][Full Text] [Related]
12. Peptide vaccine-conjugated mesoporous carriers synergize with immunogenic cell death and PD-L1 blockade for amplified immunotherapy of metastatic spinal. Wang Z; Chen L; Ma Y; Li X; Hu A; Wang H; Wang W; Li X; Tian B; Dong J J Nanobiotechnology; 2021 Aug; 19(1):243. PubMed ID: 34384429 [TBL] [Abstract][Full Text] [Related]
13. Nanomicelle protects the immune activation effects of Paclitaxel and sensitizes tumors to anti-PD-1 Immunotherapy. Yang Q; Shi G; Chen X; Lin Y; Cheng L; Jiang Q; Yan X; Jiang M; Li Y; Zhang H; Wang H; Wang Y; Wang Q; Zhang Y; Liu Y; Su X; Dai L; Tang M; Li J; Zhang L; Qian Z; Yu D; Deng H Theranostics; 2020; 10(18):8382-8399. PubMed ID: 32724476 [TBL] [Abstract][Full Text] [Related]
14. Photodynamic therapy synergizes with PD-L1 checkpoint blockade for immunotherapy of CRC by multifunctional nanoparticles. Yuan Z; Fan G; Wu H; Liu C; Zhan Y; Qiu Y; Shou C; Gao F; Zhang J; Yin P; Xu K Mol Ther; 2021 Oct; 29(10):2931-2948. PubMed ID: 34023507 [TBL] [Abstract][Full Text] [Related]
15. A near-infrared laser and H Deng L; Sheng D; Liu M; Yang L; Ran H; Li P; Cai X; Sun Y; Wang Z Biomater Sci; 2020 Feb; 8(3):858-870. PubMed ID: 31808470 [TBL] [Abstract][Full Text] [Related]
16. Metabolic reprogramming mediated PD-L1 depression and hypoxia reversion to reactivate tumor therapy. Zhou Z; Liu Y; Song W; Jiang X; Deng Z; Xiong W; Shen J J Control Release; 2022 Dec; 352():793-812. PubMed ID: 36343761 [TBL] [Abstract][Full Text] [Related]
17. Biosynthetic MnSe nanobomb with low Mn content activates the cGAS-STING pathway and induces immunogenic cell death to enhance antitumour immunity. Gao W; Wang Y; Wang P; Kan W; Wang M; Li H; Wang X; Yuan P; Ma Y; Zhang J; Tian G; Zhang G Acta Biomater; 2024 Aug; 184():383-396. PubMed ID: 38936753 [TBL] [Abstract][Full Text] [Related]
18. Self-delivery nanodrug to manipulate tumor microenvironment for boosting photodynamic cancer immunotherapy. Feng X; Zeng L; Wu L; Chen Z; Lin W; Song H; Lan F Biomed Pharmacother; 2024 Sep; 178():117220. PubMed ID: 39094543 [TBL] [Abstract][Full Text] [Related]
19. Targeted co-delivery of a photosensitizer and an antisense oligonucleotide based on an activatable hyaluronic acid nanosystem with endogenous oxygen generation for enhanced photodynamic therapy of hypoxic tumors. Wu Y; Ding L; Zheng C; Li H; Wu M; Sun Y; Liu X; Zhang X; Zeng Y Acta Biomater; 2022 Nov; 153():419-430. PubMed ID: 36115655 [TBL] [Abstract][Full Text] [Related]
20. Developing Hypoxia-Sensitive System via Designing Tumor-Targeted Fullerene-Based Photosensitizer for Multimodal Therapy of Deep Tumor. Li L; Fu J; Ye J; Liu L; Sun Z; Wang H; Tan S; Zhen M; Wang C; Bai C Adv Mater; 2024 Jun; 36(23):e2310875. PubMed ID: 38450765 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]