These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 39137860)
21. Pyrolysis Characteristics and Reaction Mechanisms of Pine Needles. Zhang D; Pan R; Chen R; Xu X Appl Biochem Biotechnol; 2019 Dec; 189(4):1056-1083. PubMed ID: 31165393 [TBL] [Abstract][Full Text] [Related]
22. Catalytic upgrading of volatiles in co-pyrolysis of coal and biomass by Mo-MFI molecular sieves. Zhang Q; Zhang S; Liu J; Li J; Liu J; Zhou J; Wu L RSC Adv; 2023 Nov; 13(48):33852-33862. PubMed ID: 38020038 [TBL] [Abstract][Full Text] [Related]
23. Evaluation of the antifungal effects of bio-oil prepared with lignocellulosic biomass using fast pyrolysis technology. Kim KH; Jeong HS; Kim JY; Han GS; Choi IG; Choi JW Chemosphere; 2012 Oct; 89(6):688-93. PubMed ID: 22784866 [TBL] [Abstract][Full Text] [Related]
24. Effect of steam on the homogeneous conversion of tar contained from the co-pyrolysis of biomass and plastics. Tang F; Jin Y; Chi Y; Zhu Z; Cai J; Li Z; Li M Environ Sci Pollut Res Int; 2021 Dec; 28(48):68909-68919. PubMed ID: 34286426 [TBL] [Abstract][Full Text] [Related]
25. Co-pyrolysis of pine sawdust and lignite in a thermogravimetric analyzer and a fixed-bed reactor. Song Y; Tahmasebi A; Yu J Bioresour Technol; 2014 Dec; 174():204-11. PubMed ID: 25463801 [TBL] [Abstract][Full Text] [Related]
26. Characterization of the degradation products of lignocellulosic biomass by using tandem mass spectrometry experiments, model compounds, and quantum chemical calculations. Guthrie JD; Rowell CER; Anyaeche RO; Alzarieni KZ; Kenttämaa HI Mass Spectrom Rev; 2024; 43(2):369-408. PubMed ID: 36727592 [TBL] [Abstract][Full Text] [Related]
27. Production of an upgraded lignin-derived bio-oil using the clay catalysts of bentonite and olivine and the spent FCC in a bench-scale fixed bed pyrolyzer. Ro D; Shafaghat H; Jang SH; Lee HW; Jung SC; Jae J; Cha JS; Park YK Environ Res; 2019 May; 172():658-664. PubMed ID: 30878737 [TBL] [Abstract][Full Text] [Related]
28. Production of a bio-magnetic adsorbent via co-pyrolysis of pine wood waste and red mud. Kang K; Loebsack G; Sarchami T; Klinghoffer NB; Papari S; Yeung KK; Berruti F Waste Manag; 2022 Jul; 149():124-133. PubMed ID: 35728476 [TBL] [Abstract][Full Text] [Related]
29. Interaction of the lignin-/cellulose-derived char with volatiles of varied origin: Part of the process for evolution of products in pyrolysis. Chen Y; Li C; Zhang L; Chen Q; Zhang S; Xiang J; Hu S; Wang Y; Hu X Chemosphere; 2023 Sep; 336():139248. PubMed ID: 37330062 [TBL] [Abstract][Full Text] [Related]
30. Catalytic fast pyrolysis of maize straw with a core-shell ZSM-5@SBA-15 catalyst for producing phenols and hydrocarbons. Xue X; Liu Y; Wu L; Pan X; Liang J; Sun Y Bioresour Technol; 2019 Oct; 289():121691. PubMed ID: 31252318 [TBL] [Abstract][Full Text] [Related]
31. Selective Production of Phenol-Rich Bio-Oil From Corn Straw Waste by Direct Microwave Pyrolysis Without Extra Catalyst. Zhao Z; Jiang Z; Xu H; Yan K Front Chem; 2021; 9():700887. PubMed ID: 34277570 [TBL] [Abstract][Full Text] [Related]
32. Effect of Cd on Pyrolysis Velocity and Deoxygenation Characteristics of Rice Straw: Analogized with Cd-Impregnated Representative Biomass Components. Xu Z; Guo Z; Xie H; Hu Y Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897323 [TBL] [Abstract][Full Text] [Related]
33. Lignocellulosic biomass-based pyrolysis: A comprehensive review. K N Y; T PD; P S; S K; R YK; Varjani S; AdishKumar S; Kumar G; J RB Chemosphere; 2022 Jan; 286(Pt 2):131824. PubMed ID: 34388872 [TBL] [Abstract][Full Text] [Related]
34. Effect of pretreatment with Phanerochaete chrysosporium on physicochemical properties and pyrolysis behaviors of corn stover. Sun Z; Mao Y; Liu S; Zhang H; Xu Y; Geng R; Lu J; Huang S; Yuan Q; Zhang S; Dong Q Bioresour Technol; 2022 Oct; 361():127687. PubMed ID: 35878774 [TBL] [Abstract][Full Text] [Related]
35. Phenol preparation from catalytic pyrolysis of palm kernel shell at low temperatures. Chang G; Miao P; Yan X; Wang G; Guo Q Bioresour Technol; 2018 Apr; 253():214-219. PubMed ID: 29351874 [TBL] [Abstract][Full Text] [Related]
36. Comparison of the pyrolysis behavior of lignins from different tree species. Wang S; Wang K; Liu Q; Gu Y; Luo Z; Cen K; Fransson T Biotechnol Adv; 2009; 27(5):562-7. PubMed ID: 19393737 [TBL] [Abstract][Full Text] [Related]
37. [Phenolic foam prepared by lignin from a steam-explosion derived biorefinery of corn stalk]. Wang G; Chen H Sheng Wu Gong Cheng Xue Bao; 2014 Jun; 30(6):901-10. PubMed ID: 25212007 [TBL] [Abstract][Full Text] [Related]
38. Kinetic Study of the Pyrolysis and Oxidation of Guaiacol. Nowakowska M; Herbinet O; Dufour A; Glaude PA J Phys Chem A; 2018 Oct; 122(39):7894-7909. PubMed ID: 30200758 [TBL] [Abstract][Full Text] [Related]
39. Effects of synergistic fungal pretreatment on structure and thermal properties of lignin from corncob. You T; Li X; Wang R; Zhang X; Xu F Bioresour Technol; 2019 Jan; 272():123-129. PubMed ID: 30317155 [TBL] [Abstract][Full Text] [Related]
40. Promotion of levoglucosan production from biomass pyrolysis by hydrogen peroxide pre-oxidation. Yang H; Li X; Liu S; Lin G; Guo X; Wang X; Ding K; Huang Y; Zhang S Bioresour Technol; 2024 May; 400():130667. PubMed ID: 38583674 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]