These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 39137961)
1. A fast and adaptive detection framework for genome-wide chromatin loop mapping from Hi-C data. Chen S; Wang J; Jung I; Qiu Z; Gao X; Li Y Genome Res; 2024 Sep; 34(8):1174-1184. PubMed ID: 39137961 [TBL] [Abstract][Full Text] [Related]
2. Enhancing Hi-C contact matrices for loop detection with Capricorn: a multiview diffusion model. Fang T; Liu Y; Woicik A; Lu M; Jha A; Wang X; Li G; Hristov B; Liu Z; Xu H; Noble WS; Wang S Bioinformatics; 2024 Jun; 40(Suppl 1):i471-i480. PubMed ID: 38940142 [TBL] [Abstract][Full Text] [Related]
3. BAT Hi-C maps global chromatin interactions in an efficient and economical way. Huang J; Jiang Y; Zheng H; Ji X Methods; 2020 Jan; 170():38-47. PubMed ID: 31442560 [TBL] [Abstract][Full Text] [Related]
4. Selfish: discovery of differential chromatin interactions via a self-similarity measure. Ardakany AR; Ay F; Lonardi S Bioinformatics; 2019 Jul; 35(14):i145-i153. PubMed ID: 31510653 [TBL] [Abstract][Full Text] [Related]
5. Sci-Hi-C: A single-cell Hi-C method for mapping 3D genome organization in large number of single cells. Ramani V; Deng X; Qiu R; Lee C; Disteche CM; Noble WS; Shendure J; Duan Z Methods; 2020 Jan; 170():61-68. PubMed ID: 31536770 [TBL] [Abstract][Full Text] [Related]
6. Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell. Nagano T; Lubling Y; Yaffe E; Wingett SW; Dean W; Tanay A; Fraser P Nat Protoc; 2015 Dec; 10(12):1986-2003. PubMed ID: 26540590 [TBL] [Abstract][Full Text] [Related]
7. Hi-Corrector: a fast, scalable and memory-efficient package for normalizing large-scale Hi-C data. Li W; Gong K; Li Q; Alber F; Zhou XJ Bioinformatics; 2015 Mar; 31(6):960-2. PubMed ID: 25391400 [TBL] [Abstract][Full Text] [Related]
8. Chromatin 3D structure reconstruction with consideration of adjacency relationship among genomic loci. Li FZ; Liu ZE; Li XY; Bu LM; Bu HX; Liu H; Zhang CM BMC Bioinformatics; 2020 Jul; 21(1):272. PubMed ID: 32611376 [TBL] [Abstract][Full Text] [Related]
9. Characteristic arrangement of nucleosomes is predictive of chromatin interactions at kilobase resolution. Zhang H; Li F; Jia Y; Xu B; Zhang Y; Li X; Zhang Z Nucleic Acids Res; 2017 Dec; 45(22):12739-12751. PubMed ID: 29036650 [TBL] [Abstract][Full Text] [Related]
10. Single-cell Hi-C data analysis: safety in numbers. Galitsyna AA; Gelfand MS Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34406348 [TBL] [Abstract][Full Text] [Related]
11. A global high-density chromatin interaction network reveals functional long-range and trans-chromosomal relationships. Lohia R; Fox N; Gillis J Genome Biol; 2022 Nov; 23(1):238. PubMed ID: 36352464 [TBL] [Abstract][Full Text] [Related]
12. Assessing relationships between chromatin interactions and regulatory genomic activities using the self-organizing map. Kunz T; Rieber L; Mahony S Methods; 2021 May; 189():12-21. PubMed ID: 32652235 [TBL] [Abstract][Full Text] [Related]
13. HiC-ACT: improved detection of chromatin interactions from Hi-C data via aggregated Cauchy test. Lagler TM; Abnousi A; Hu M; Yang Y; Li Y Am J Hum Genet; 2021 Feb; 108(2):257-268. PubMed ID: 33545029 [TBL] [Abstract][Full Text] [Related]
14. EnHiC: learning fine-resolution Hi-C contact maps using a generative adversarial framework. Hu Y; Ma W Bioinformatics; 2021 Jul; 37(Suppl_1):i272-i279. PubMed ID: 34252966 [TBL] [Abstract][Full Text] [Related]
15. Identification and utilization of copy number information for correcting Hi-C contact map of cancer cell lines. Khalil AIS; Muzaki SRBM; Chattopadhyay A; Sanyal A BMC Bioinformatics; 2020 Nov; 21(1):506. PubMed ID: 33160308 [TBL] [Abstract][Full Text] [Related]
16. Comparison of computational methods for Hi-C data analysis. Forcato M; Nicoletti C; Pal K; Livi CM; Ferrari F; Bicciato S Nat Methods; 2017 Jul; 14(7):679-685. PubMed ID: 28604721 [TBL] [Abstract][Full Text] [Related]
17. Improving comparative analyses of Hi-C data via contrastive self-supervised learning. Li H; He X; Kurowski L; Zhang R; Zhao D; Zeng J Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37287135 [TBL] [Abstract][Full Text] [Related]
18. Identifying statistically significant chromatin contacts from Hi-C data with FitHiC2. Kaul A; Bhattacharyya S; Ay F Nat Protoc; 2020 Mar; 15(3):991-1012. PubMed ID: 31980751 [TBL] [Abstract][Full Text] [Related]
19. Read Mapping for Hi-C Analysis. Kelly ST; Tanaka K; Hosaka C; Yuhara S Methods Mol Biol; 2025; 2856():25-62. PubMed ID: 39283445 [TBL] [Abstract][Full Text] [Related]
20. A supervised learning framework for chromatin loop detection in genome-wide contact maps. Salameh TJ; Wang X; Song F; Zhang B; Wright SM; Khunsriraksakul C; Ruan Y; Yue F Nat Commun; 2020 Jul; 11(1):3428. PubMed ID: 32647330 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]