These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 39137961)

  • 21. Practical Analysis of Genome Contact Interaction Experiments.
    Carty MA; Elemento O
    Methods Mol Biol; 2016; 1418():177-89. PubMed ID: 27008015
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient Hi-C inversion facilitates chromatin folding mechanism discovery and structure prediction.
    Schuette G; Ding X; Zhang B
    Biophys J; 2023 Sep; 122(17):3425-3438. PubMed ID: 37496267
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DiffGR: Detecting Differentially Interacting Genomic Regions from Hi-C Contact Maps.
    Liu H; Ma W
    Genomics Proteomics Bioinformatics; 2024 Jul; 22(2):. PubMed ID: 39222712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Robust single-cell Hi-C clustering by convolution- and random-walk-based imputation.
    Zhou J; Ma J; Chen Y; Cheng C; Bao B; Peng J; Sejnowski TJ; Dixon JR; Ecker JR
    Proc Natl Acad Sci U S A; 2019 Jul; 116(28):14011-14018. PubMed ID: 31235599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution.
    Ma W; Ay F; Lee C; Gulsoy G; Deng X; Cook S; Hesson J; Cavanaugh C; Ware CB; Krumm A; Shendure J; Blau CA; Disteche CM; Noble WS; Duan Z
    Methods; 2018 Jun; 142():59-73. PubMed ID: 29382556
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ASHIC: hierarchical Bayesian modeling of diploid chromatin contacts and structures.
    Ye T; Ma W
    Nucleic Acids Res; 2020 Dec; 48(21):e123. PubMed ID: 33074315
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Si-C is a method for inferring super-resolution intact genome structure from single-cell Hi-C data.
    Meng L; Wang C; Shi Y; Luo Q
    Nat Commun; 2021 Jul; 12(1):4369. PubMed ID: 34272403
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiplex-GAM: genome-wide identification of chromatin contacts yields insights overlooked by Hi-C.
    Beagrie RA; Thieme CJ; Annunziatella C; Baugher C; Zhang Y; Schueler M; Kukalev A; Kempfer R; Chiariello AM; Bianco S; Li Y; Davis T; Scialdone A; Welch LR; Nicodemi M; Pombo A
    Nat Methods; 2023 Jul; 20(7):1037-1047. PubMed ID: 37336949
    [TBL] [Abstract][Full Text] [Related]  

  • 29. HiCHap: a package to correct and analyze the diploid Hi-C data.
    Luo H; Li X; Fu H; Peng C
    BMC Genomics; 2020 Oct; 21(1):746. PubMed ID: 33109075
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Capturing cell type-specific chromatin compartment patterns by applying topic modeling to single-cell Hi-C data.
    Kim HJ; Yardımcı GG; Bonora G; Ramani V; Liu J; Qiu R; Lee C; Hesson J; Ware CB; Shendure J; Duan Z; Noble WS
    PLoS Comput Biol; 2020 Sep; 16(9):e1008173. PubMed ID: 32946435
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative study on chromatin loop callers using Hi-C data reveals their effectiveness.
    Chowdhury HMAM; Boult T; Oluwadare O
    BMC Bioinformatics; 2024 Mar; 25(1):123. PubMed ID: 38515011
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Four-Dimensional Chromosome Structure Prediction.
    Highsmith M; Cheng J
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575948
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DeepLoop robustly maps chromatin interactions from sparse allele-resolved or single-cell Hi-C data at kilobase resolution.
    Zhang S; Plummer D; Lu L; Cui J; Xu W; Wang M; Liu X; Prabhakar N; Shrinet J; Srinivasan D; Fraser P; Li Y; Li J; Jin F
    Nat Genet; 2022 Jul; 54(7):1013-1025. PubMed ID: 35817982
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identifying topologically associating domains using differential kernels.
    Maisuradze L; King MC; Surovtsev IV; Mochrie SGJ; Shattuck MD; O'Hern CS
    PLoS Comput Biol; 2024 Jul; 20(7):e1012221. PubMed ID: 39008525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of computational methods for 3D genome analysis at single-cell Hi-C level.
    Li X; An Z; Zhang Z
    Methods; 2020 Oct; 181-182():52-61. PubMed ID: 31445093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Lightweight Framework For Chromatin Loop Detection at the Single-Cell Level.
    Wang F; Alinejad-Rokny H; Lin J; Gao T; Chen X; Zheng Z; Meng L; Li X; Wong KC
    Adv Sci (Weinh); 2023 Nov; 10(33):e2303502. PubMed ID: 37816141
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TADBD: a sensitive and fast method for detection of typologically associated domain boundaries.
    Lyu H; Li L; Wu Z; Wang T; Zheng J; Wang H
    Biotechniques; 2020 Jul; 69(1):376-383. PubMed ID: 32252545
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detecting Spatial Chromatin Organization by Chromosome Conformation Capture II: Genome-Wide Profiling by Hi-C.
    Vietri Rudan M; Hadjur S; Sexton T
    Methods Mol Biol; 2017; 1589():47-74. PubMed ID: 26900130
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Loop detection using Hi-C data with HiCExplorer.
    Wolff J; Backofen R; Grüning B
    Gigascience; 2022 Jul; 11():. PubMed ID: 35809047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MSTD: an efficient method for detecting multi-scale topological domains from symmetric and asymmetric 3D genomic maps.
    Ye Y; Gao L; Zhang S
    Nucleic Acids Res; 2019 Jun; 47(11):e65. PubMed ID: 30941409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.