These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 39138209)

  • 1. Discovery of essential kinetoplastid-insect adhesion proteins and their function in Leishmania-sand fly interactions.
    Yanase R; Pruzinova K; Owino BO; Rea E; Moreira-Leite F; Taniguchi A; Nonaka S; Sádlová J; Vojtkova B; Volf P; Sunter JD
    Nat Commun; 2024 Aug; 15(1):6960. PubMed ID: 39138209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sand flies, Leishmania, and transcriptome-borne solutions.
    Oliveira F; Jochim RC; Valenzuela JG; Kamhawi S
    Parasitol Int; 2009 Mar; 58(1):1-5. PubMed ID: 18768167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phlebotomine sand flies and Leishmania parasites: friends or foes?
    Kamhawi S
    Trends Parasitol; 2006 Sep; 22(9):439-45. PubMed ID: 16843727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies.
    Bates PA
    Int J Parasitol; 2007 Aug; 37(10):1097-106. PubMed ID: 17517415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leishmania HASP and SHERP Genes Are Required for In Vivo Differentiation, Parasite Transmission and Virulence Attenuation in the Host.
    Doehl JS; Sádlová J; Aslan H; Pružinová K; Metangmo S; Votýpka J; Kamhawi S; Volf P; Smith DF
    PLoS Pathog; 2017 Jan; 13(1):e1006130. PubMed ID: 28095465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Host-Parasite Interactions: Regulation of Leishmania Infection in Sand Fly.
    Omondi ZN; Arserim SK; Töz S; Özbel Y
    Acta Parasitol; 2022 Jun; 67(2):606-618. PubMed ID: 35107776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leishmania manipulation of sand fly feeding behavior results in enhanced transmission.
    Rogers ME; Bates PA
    PLoS Pathog; 2007 Jun; 3(6):e91. PubMed ID: 17604451
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Sunter JD; Yanase R; Wang Z; Catta-Preta CMC; Moreira-Leite F; Myskova J; Pruzinova K; Volf P; Mottram JC; Gull K
    Proc Natl Acad Sci U S A; 2019 Mar; 116(13):6351-6360. PubMed ID: 30850532
    [No Abstract]   [Full Text] [Related]  

  • 9. Sand Fly Studies Predict Transmission Potential of Drug-resistant Leishmania.
    Van Bockstal L; Hendrickx S; Maes L; Caljon G
    Trends Parasitol; 2020 Sep; 36(9):785-795. PubMed ID: 32713762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructural biology of Leishmania (Viannia) panamensis (=Leishmania braziliensis panamensis) in Lutzomyia gomezi (Diptera: Psychodidae): a natural host-parasite association.
    Walters LL; Chaplin GL; Modi GB; Tesh RB
    Am J Trop Med Hyg; 1989 Jan; 40(1):19-39. PubMed ID: 2916730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gels and cells: the Leishmania biofilm as a space and place for parasite transmission.
    Rogers ME; de Pablos LM; Sunter JD
    Trends Parasitol; 2024 Oct; 40(10):876-885. PubMed ID: 39218719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What has proteomics taught us about Leishmania development?
    Tsigankov P; Gherardini PF; Helmer-Citterich M; Zilberstein D
    Parasitology; 2012 Aug; 139(9):1146-57. PubMed ID: 22369930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The flagellar protein FLAG1/SMP1 is a candidate for Leishmania-sand fly interaction.
    Di-Blasi T; Lobo AR; Nascimento LM; Córdova-Rojas JL; Pestana K; Marín-Villa M; Tempone AJ; Telleria EL; Ramalho-Ortigão M; McMahon-Pratt D; Traub-Csekö YM
    Vector Borne Zoonotic Dis; 2015 Mar; 15(3):202-9. PubMed ID: 25793476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring spatial co-occurrences of species potentially involved in Leishmania transmission cycles through a predictive and fieldwork approach.
    López M; Erazo D; Hoyos J; León C; Fuya P; Lugo L; Cordovez JM; González C
    Sci Rep; 2021 Mar; 11(1):6789. PubMed ID: 33762622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis.
    Sacks D; Kamhawi S
    Annu Rev Microbiol; 2001; 55():453-83. PubMed ID: 11544364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a midgut mucin-like glycoconjugate of Lutzomyia longipalpis with a potential role in Leishmania attachment.
    Myšková J; Dostálová A; Pěničková L; Halada P; Bates PA; Volf P
    Parasit Vectors; 2016 Jul; 9(1):413. PubMed ID: 27457627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blocked stomodeal valve of the insect vector: similar mechanism of transmission in two trypanosomatid models.
    Volf P; Hajmova M; Sadlova J; Votypka J
    Int J Parasitol; 2004 Oct; 34(11):1221-7. PubMed ID: 15491584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leishmania infection induces a limited differential gene expression in the sand fly midgut.
    Coutinho-Abreu IV; Serafim TD; Meneses C; Kamhawi S; Oliveira F; Valenzuela JG
    BMC Genomics; 2020 Sep; 21(1):608. PubMed ID: 32887545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutrient sensing in Leishmania: Flagellum and cytosol.
    Kelly FD; Yates PA; Landfear SM
    Mol Microbiol; 2021 May; 115(5):849-859. PubMed ID: 33112443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of Leishmania infantum Lipophosphoglycan to the Midgut Is Not Sufficient To Define Vector Competence in
    Coutinho-Abreu IV; Oristian J; de Castro W; Wilson TR; Meneses C; Soares RP; Borges VM; Descoteaux A; Kamhawi S; Valenzuela JG
    mSphere; 2020 Sep; 5(5):. PubMed ID: 32907950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.