These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 39138738)
1. Enhanced thermoelectric performance of Hf-doped ZrNiSn: a first principle study. Cao D; Cao J J Mol Model; 2024 Aug; 30(9):308. PubMed ID: 39138738 [TBL] [Abstract][Full Text] [Related]
2. Crucial Role of Ni Point Defects and Sb Doping for Tailoring the Thermoelectric Properties of ZrNiSn Half-Heusler Alloy: An Ab Initio Study. Ascrizzi E; Ribaldone C; Casassa S Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473533 [TBL] [Abstract][Full Text] [Related]
3. Decreasing the Carrier Concentration of ZrNiSn: An Opposite Way to the Best N-Type Half-Heusler Thermoelectrics. Dong Z; Wang C; Chen J; Li Z; Dai S; Yan X; Zhang J; Yang J; Zhai Q; Luo J Small Methods; 2024 Jan; 8(1):e2300829. PubMed ID: 37728191 [TBL] [Abstract][Full Text] [Related]
4. Thermoelectric properties, efficiency and thermal expansion of ZrNiSn half-Heusler by first-principles calculations. Shastri SS; Pandey SK J Phys Condens Matter; 2020 Jun; 32(35):. PubMed ID: 32315993 [TBL] [Abstract][Full Text] [Related]
5. Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds. Hong AJ; Li L; He R; Gong JJ; Yan ZB; Wang KF; Liu JM; Ren ZF Sci Rep; 2016 Mar; 6():22778. PubMed ID: 26947395 [TBL] [Abstract][Full Text] [Related]
6. Interpreting the Combustion Process for High-Performance ZrNiSn Thermoelectric Materials. Hu T; Yang D; Su X; Yan Y; You Y; Liu W; Uher C; Tang X ACS Appl Mater Interfaces; 2018 Jan; 10(1):864-872. PubMed ID: 29236464 [TBL] [Abstract][Full Text] [Related]
7. Enhanced Thermoelectric Performance of Zr Yang X; Jiang Z; Kang H; Chen Z; Guo E; Liu D; Yang F; Li R; Jiang X; Wang T ACS Appl Mater Interfaces; 2020 Jan; 12(3):3773-3783. PubMed ID: 31880427 [TBL] [Abstract][Full Text] [Related]
8. Transport properties of RuV-based half-Heusler semiconductors for thermoelectric applications: a computational study. Enamullah ; Sharma SK; Ahmed SS J Phys Condens Matter; 2020 May; 32(40):405501. PubMed ID: 32460251 [TBL] [Abstract][Full Text] [Related]
9. High thermoelectric performance of topological half-Heusler compound LaPtBi achieved by hydrostatic pressure. Ning S; Huang S; Zhang Z; Zhang R; Qi N; Chen Z Phys Chem Chem Phys; 2020 Jul; 22(26):14621-14629. PubMed ID: 32567608 [TBL] [Abstract][Full Text] [Related]
10. Enhanced figure of merit in two-dimensional ZrNiSn nanosheets for thermoelectric applications. Monika S; Suganya G; Gokulsaswath V; Kalpana G Nanotechnology; 2024 Jul; 35(39):. PubMed ID: 38861969 [TBL] [Abstract][Full Text] [Related]
11. Exploring structural, mechanical, and thermoelectric properties of half-Heusler compounds RhBiX (X = Ti, Zr, Hf): A first-principles investigation. Wei J; Guo Y; Wang G RSC Adv; 2023 Apr; 13(17):11513-11524. PubMed ID: 37063731 [TBL] [Abstract][Full Text] [Related]
12. Electronic, magnetic, elastic, thermal and thermoelectric proprieties of Co El Krimi Y; Masrour R; Jabar A J Mol Graph Model; 2022 Jul; 114():108165. PubMed ID: 35344916 [TBL] [Abstract][Full Text] [Related]
13. First-principles investigation on the thermoelectric performance of half-Heusler compound CuLiX(X = Se, Te). Jia K; Yang CL; Wang MS; Ma XG; Yi YG J Phys Condens Matter; 2021 Mar; 33(9):095501. PubMed ID: 33207328 [TBL] [Abstract][Full Text] [Related]
14. Continuously Enhanced Structural Disorder To Suppress the Lattice Thermal Conductivity of ZrNiSn-Based Half-Heusler Alloys by Multielement and Multisite Alloying with Very Low Hf Content. Gong B; Li Y; Liu F; Zhu J; Wang X; Ao W; Zhang C; Li J; Xie H; Zhu T ACS Appl Mater Interfaces; 2019 Apr; 11(14):13397-13404. PubMed ID: 30883083 [TBL] [Abstract][Full Text] [Related]
15. In Situ Evolution of Secondary Metallic Phases in Off-Stoichiometric ZrNiSn for Enhanced Thermoelectric Performance. Johari KK; Sharma DK; Verma AK; Bhardwaj R; Chauhan NS; Kumar S; Singh MN; Bathula S; Gahtori B ACS Appl Mater Interfaces; 2022 May; 14(17):19579-19593. PubMed ID: 35442621 [TBL] [Abstract][Full Text] [Related]
16. The Thermoelectric Properties of Monolayer MAs Wei QL; Yang HY; Wu YY; Liu YB; Li YH Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33081158 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure, stability, and transport properties of Li Mahmoudi S; Golzan MM; Nemati-Kande E Sci Rep; 2024 May; 14(1):12201. PubMed ID: 38806656 [TBL] [Abstract][Full Text] [Related]
18. Thermoelectric Performance Improvement in the ZrNiSn-Based Composite via Modulating Si Addition. Jia C; Zhu B; Shi Y; Shen Y; Liu H; Tao L; Zhang L; Xue F ACS Appl Mater Interfaces; 2024 Feb; 16(7):9561-9568. PubMed ID: 38324464 [TBL] [Abstract][Full Text] [Related]
19. Hf/Sb co-doping induced a high thermoelectric performance of ZrNiSn: First-principles calculation. Zhang J; Zhang X; Wang Y Sci Rep; 2017 Nov; 7(1):14590. PubMed ID: 29109433 [TBL] [Abstract][Full Text] [Related]
20. Insight into the structural, optoelectronic, and thermoelectric properties of Fe Azam A; Sharma R; Behera D; Raza HH; Ali HS; Abdelmohsen SAM; Abdelbacki AMM; Mukherjee SK RSC Adv; 2023 May; 13(23):15437-15447. PubMed ID: 37223414 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]