These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 39139654)

  • 21. The Accuracy and Precision of Position and Orientation Tracking in the HTC Vive Virtual Reality System for Scientific Research.
    Niehorster DC; Li L; Lappe M
    Iperception; 2017; 8(3):2041669517708205. PubMed ID: 28567271
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Eye Tracking in Virtual Reality: Vive Pro Eye Spatial Accuracy, Precision, and Calibration Reliability.
    Schuetz I; Fiehler K
    J Eye Mov Res; 2022; 15(3):. PubMed ID: 37125009
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A low-cost platform for eye-tracking research: Using Pupil© in behavior analysis.
    Picanço CR; Tonneau F
    J Exp Anal Behav; 2018 Sep; 110(2):157-170. PubMed ID: 29926919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The impact of slippage on the data quality of head-worn eye trackers.
    Niehorster DC; Santini T; Hessels RS; Hooge ITC; Kasneci E; Nyström M
    Behav Res Methods; 2020 Jun; 52(3):1140-1160. PubMed ID: 31898290
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Extended reality quantification of pupil reactivity as a non-invasive assessment for the pathogenesis of spaceflight associated neuro-ocular syndrome: A technology validation study for astronaut health.
    Sarker P; Ong J; Zaman N; Kamran SA; Waisberg E; Paladugu P; Lee AG; Tavakkoli A
    Life Sci Space Res (Amst); 2023 Aug; 38():79-86. PubMed ID: 37481311
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Swift-Eye: Towards Anti-blink Pupil Tracking for Precise and Robust High-Frequency Near-Eye Movement Analysis with Event Cameras.
    Zhang T; Shen Y; Zhao G; Wang L; Chen X; Bai L; Zhou Y
    IEEE Trans Vis Comput Graph; 2024 May; 30(5):2077-2086. PubMed ID: 38437077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigating the Use of Virtual Reality Headsets for Postural Control Assessment: Instrument Validation Study.
    Sylcott B; Lin CC; Williams K; Hinderaker M
    JMIR Rehabil Assist Technol; 2021 Nov; 8(4):e24950. PubMed ID: 34779789
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A toolkit for wide-screen dynamic area of interest measurements using the Pupil Labs Core Eye Tracker.
    Faraji Y; van Rijn JW; van Nispen RMA; van Rens GHMB; Melis-Dankers BJM; Koopman J; van Rijn LJ
    Behav Res Methods; 2023 Oct; 55(7):3820-3830. PubMed ID: 36253600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Virtual Reality Analgesia With Interactive Eye Tracking During Brief Thermal Pain Stimuli: A Randomized Controlled Trial (Crossover Design).
    Al-Ghamdi NA; Meyer WJ; Atzori B; Alhalabi W; Seibel CC; Ullman D; Hoffman HG
    Front Hum Neurosci; 2019; 13():467. PubMed ID: 32038200
    [TBL] [Abstract][Full Text] [Related]  

  • 31. EyeLoop: An Open-Source System for High-Speed, Closed-Loop Eye-Tracking.
    Arvin S; Rasmussen RN; Yonehara K
    Front Cell Neurosci; 2021; 15():779628. PubMed ID: 34955752
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measuring Virtual Reality Headset Resolution and Field of View: Implications for Vision Care Applications.
    Lynn MH; Luo G; Tomasi M; Pundlik S; E Houston K
    Optom Vis Sci; 2020 Aug; 97(8):573-582. PubMed ID: 32769841
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RemoteEye: An open-source high-speed remote eye tracker : Implementation insights of a pupil- and glint-detection algorithm for high-speed remote eye tracking.
    Hosp B; Eivazi S; Maurer M; Fuhl W; Geisler D; Kasneci E
    Behav Res Methods; 2020 Jun; 52(3):1387-1401. PubMed ID: 32212086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accuracy Investigation of the Pose Determination of a VR System.
    Bauer P; Lienhart W; Jost S
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33669148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NotifiVR: Exploring Interruptions and Notifications in Virtual Reality.
    Ghosh S; Winston L; Panchal N; Kimura-Thollander P; Hotnog J; Cheong D; Reyes G; Abowd GD
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1447-1456. PubMed ID: 29543163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Head mounted displays for capturing head kinematics in postural tasks.
    Lubetzky AV; Wang Z; Krasovsky T
    J Biomech; 2019 Mar; 86():175-182. PubMed ID: 30797562
    [TBL] [Abstract][Full Text] [Related]  

  • 37. HTC Vive MeVisLab integration via OpenVR for medical applications.
    Egger J; Gall M; Wallner J; Boechat P; Hann A; Li X; Chen X; Schmalstieg D
    PLoS One; 2017; 12(3):e0173972. PubMed ID: 28323840
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An eye tracking based virtual reality system for use inside magnetic resonance imaging systems.
    Qian K; Arichi T; Price A; Dall'Orso S; Eden J; Noh Y; Rhode K; Burdet E; Neil M; Edwards AD; Hajnal JV
    Sci Rep; 2021 Aug; 11(1):16301. PubMed ID: 34381099
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A method for synchronized use of EEG and eye tracking in fully immersive VR.
    Larsen OFP; Tresselt WG; Lorenz EA; Holt T; Sandstrak G; Hansen TI; Su X; Holt A
    Front Hum Neurosci; 2024; 18():1347974. PubMed ID: 38468815
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using virtual reality-based neurocognitive testing and eye tracking to study naturalistic cognitive-motor performance.
    Wilf M; Korakin A; Bahat Y; Koren O; Galor N; Dagan O; Wright WG; Friedman J; Plotnik M
    Neuropsychologia; 2024 Feb; 194():108744. PubMed ID: 38072162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.