These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 39139722)

  • 1. Linking genetic markers and crop model parameters using neural networks to enhance genomic prediction of integrative traits.
    Larue F; Rouan L; Pot D; Rami JF; Luquet D; Beurier G
    Front Plant Sci; 2024; 15():1393965. PubMed ID: 39139722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using genomic prediction with crop growth models enables the prediction of associated traits in wheat.
    Jighly A; Thayalakumaran T; O'Leary GJ; Kant S; Panozzo J; Aggarwal R; Hessel D; Forrest KL; Technow F; Tibbits JFG; Totir R; Hayden MJ; Munkvold J; Daetwyler HD
    J Exp Bot; 2023 Mar; 74(5):1389-1402. PubMed ID: 36205117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes.
    Abdollahi-Arpanahi R; Gianola D; Peñagaricano F
    Genet Sel Evol; 2020 Feb; 52(1):12. PubMed ID: 32093611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating biophysical crop growth models and whole genome prediction for their mutual benefit: a case study in wheat phenology.
    Jighly A; Weeks A; Christy B; O'Leary GJ; Kant S; Aggarwal R; Hessel D; Forrest KL; Technow F; Tibbits JFG; Totir R; Spangenberg GC; Hayden MJ; Munkvold J; Daetwyler HD
    J Exp Bot; 2023 Aug; 74(15):4415-4426. PubMed ID: 37177829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TrG2P: A transfer-learning-based tool integrating multi-trait data for accurate prediction of crop yield.
    Li J; Zhang D; Yang F; Zhang Q; Pan S; Zhao X; Zhang Q; Han Y; Yang J; Wang K; Zhao C
    Plant Commun; 2024 Jul; 5(7):100975. PubMed ID: 38751121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining Crop Growth Modeling With Trait-Assisted Prediction Improved the Prediction of Genotype by Environment Interactions.
    Robert P; Le Gouis J; ; Rincent R
    Front Plant Sci; 2020; 11():827. PubMed ID: 32636859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical sampling of missing environmental variables improves biophysical genomic prediction in wheat.
    Jighly A; Thayalakumaran T; Kant S; Panozzo J; Aggarwal R; Hessel D; Forrest KL; Technow F; Totir R; Goddard M; Pryce J; Hayden MJ; Munkvold J; O'Leary GJ
    Theor Appl Genet; 2024 Apr; 137(5):108. PubMed ID: 38637355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting biomass of rice with intermediate traits: Modeling method combining crop growth models and genomic prediction models.
    Toda Y; Wakatsuki H; Aoike T; Kajiya-Kanegae H; Yamasaki M; Yoshioka T; Ebana K; Hayashi T; Nakagawa H; Hasegawa T; Iwata H
    PLoS One; 2020; 15(6):e0233951. PubMed ID: 32559220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring Deep Learning for Complex Trait Genomic Prediction in Polyploid Outcrossing Species.
    Zingaretti LM; Gezan SA; Ferrão LFV; Osorio LF; Monfort A; Muñoz PR; Whitaker VM; Pérez-Enciso M
    Front Plant Sci; 2020; 11():25. PubMed ID: 32117371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Local Convolutional Neural Networks for Genomic Prediction.
    Pook T; Freudenthal J; Korte A; Simianer H
    Front Genet; 2020; 11():561497. PubMed ID: 33281867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat.
    Gianola D; Okut H; Weigel KA; Rosa GJ
    BMC Genet; 2011 Oct; 12():87. PubMed ID: 21981731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using machine learning to realize genetic site screening and genomic prediction of productive traits in pigs.
    Xiang T; Li T; Li J; Li X; Wang J
    FASEB J; 2023 Jun; 37(6):e22961. PubMed ID: 37178007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of deep learning for predicting rice traits using structural and single-nucleotide genomic variants.
    Vourlaki IT; Ramos-Onsins SE; Pérez-Enciso M; Castanera R
    Plant Methods; 2024 Aug; 20(1):121. PubMed ID: 39127715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of deep learning with bivariate models for genomic prediction of sow lifetime productivity-related traits.
    Hong JK; Kim YM; Cho ES; Lee JB; Kim YS; Park HB
    Anim Biosci; 2024 Apr; 37(4):622-630. PubMed ID: 38228129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic prediction through machine learning and neural networks for traits with epistasis.
    Costa WGD; Celeri MO; Barbosa IP; Silva GN; Azevedo CF; Borem A; Nascimento M; Cruz CD
    Comput Struct Biotechnol J; 2022; 20():5490-5499. PubMed ID: 36249559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle.
    Ehret A; Hochstuhl D; Gianola D; Thaller G
    Genet Sel Evol; 2015 Mar; 47(1):22. PubMed ID: 25886037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpretable artificial neural networks incorporating Bayesian alphabet models for genome-wide prediction and association studies.
    Zhao T; Fernando R; Cheng H
    G3 (Bethesda); 2021 Sep; 11(10):. PubMed ID: 34499126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic prediction of fertility and calving traits in Holstein cattle based on models including epistatic genetic effects.
    Alves K; Brito LF; Schenkel FS
    J Anim Breed Genet; 2023 Sep; 140(5):568-581. PubMed ID: 37254293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmarking Parametric and Machine Learning Models for Genomic Prediction of Complex Traits.
    Azodi CB; Bolger E; McCarren A; Roantree M; de Los Campos G; Shiu SH
    G3 (Bethesda); 2019 Nov; 9(11):3691-3702. PubMed ID: 31533955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic prediction for sugarcane diseases including hybrid Bayesian-machine learning approaches.
    Chen C; Bhuiyan SA; Ross E; Powell O; Dinglasan E; Wei X; Atkin F; Deomano E; Hayes B
    Front Plant Sci; 2024; 15():1398903. PubMed ID: 38751840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.