These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 39140095)
1. Effects of Phosphorus Doping on Amorphous Boron Nitride's Chemical, Sorptive, Optoelectronic, and Photocatalytic Properties. Itskou I; Kafizas A; Nevjestic I; Carrero SG; Grinter DC; Azzan H; Kerherve G; Kumar S; Tian T; Ferrer P; Held G; Heutz S; Petit C J Phys Chem C Nanomater Interfaces; 2024 Aug; 128(31):13249-13263. PubMed ID: 39140095 [TBL] [Abstract][Full Text] [Related]
2. Cu-functionalised porous boron nitride derived from a metal-organic framework. Tian T; Xu J; Xiong Y; Ramanan N; Ryan M; Xie F; Petit C J Mater Chem A Mater; 2022 Oct; 10(38):20580-20592. PubMed ID: 36324859 [TBL] [Abstract][Full Text] [Related]
3. How to Tailor Porous Boron Nitride Properties for Applications in Interfacial Processes. Itskou I; L'Hermitte A; Marchesini S; Tian T; Petit C Acc Mater Res; 2023 Feb; 4(2):143-155. PubMed ID: 36873082 [TBL] [Abstract][Full Text] [Related]
4. A Response Surface Model to Predict and Experimentally Tune the Chemical, Magnetic and Optoelectronic Properties of Oxygen-Doped Boron Nitride. Shankar RB; Mistry EDR; Lubert-Perquel D; Nevjestic I; Heutz S; Petit C Chemphyschem; 2022 Jul; 23(13):e202100854. PubMed ID: 35393663 [TBL] [Abstract][Full Text] [Related]
6. Preparation of phosphorus-doped boron nitride and its adsorption of heavy metals from flue gas. Li Y; Li H; Li R; Su X; Shen S R Soc Open Sci; 2020 Aug; 7(8):200079. PubMed ID: 32968505 [TBL] [Abstract][Full Text] [Related]
7. Synergy of developed micropores and electronic structure defects in carbon-doped boron nitride for CO Li Y; Liu L; Yu H; Zhao Y; Dai J; Zhong Y; Pan Z; Yu H Sci Total Environ; 2022 Mar; 811():151384. PubMed ID: 34742972 [TBL] [Abstract][Full Text] [Related]
8. Rational design of the carbon doping of hexagonal boron nitride for oxygen activation and oxidative desulfurization. Li H; Fu W; Yin J; Zhang J; Li Y; Jiang D; Lv N; Zhu W Phys Chem Chem Phys; 2020 Nov; 22(42):24310-24319. PubMed ID: 33107514 [TBL] [Abstract][Full Text] [Related]
9. Surface engineering of two-dimensional hexagonal boron-nitride for optoelectronic devices. Selopal GS; Abdelkarim O; Kaur J; Liu J; Jin L; Chen Z; Navarro-Pardo F; Manzhos S; Sun S; Yurtsever A; Zarrin H; Wang ZM; Rosei F Nanoscale; 2023 Oct; 15(38):15810-15830. PubMed ID: 37743729 [TBL] [Abstract][Full Text] [Related]
10. High p doped and robust band structure in Mg-doped hexagonal boron nitride. Khalil L; Ernandes C; Avila J; Rousseau A; Dudin P; Zhigadlo ND; Cassabois G; Gil B; Oehler F; Chaste J; Ouerghi A Nanoscale Adv; 2023 Jun; 5(12):3225-3232. PubMed ID: 37325527 [TBL] [Abstract][Full Text] [Related]
11. Impact of Bi Doping into Boron Nitride Nanosheets on Electronic and Optical Properties Using Theoretical Calculations and Experiments. Ikram M; Wakeel M; Hassan J; Haider A; Naz S; Ul-Hamid A; Haider J; Ali S; Goumri-Said S; Kanoun MB Nanoscale Res Lett; 2021 May; 16(1):82. PubMed ID: 33978872 [TBL] [Abstract][Full Text] [Related]
12. The transition metal surface passivated edges of hexagonal boron nitride (h-BN) and the mechanism of h-BN's chemical vapor deposition (CVD) growth. Zhao R; Li F; Liu Z; Liu Z; Ding F Phys Chem Chem Phys; 2015 Nov; 17(43):29327-34. PubMed ID: 26469316 [TBL] [Abstract][Full Text] [Related]
13. Ambient Carbon Dioxide Capture Using Boron-Rich Porous Boron Nitride: A Theoretical Study. Li L; Liu Y; Yang X; Yu X; Fang Y; Li Q; Jin P; Tang C ACS Appl Mater Interfaces; 2017 May; 9(18):15399-15407. PubMed ID: 28397502 [TBL] [Abstract][Full Text] [Related]
14. Computational study of X-doped hexagonal boron nitride (h-BN): structural and electronic properties (X = P, S, O, F, Cl). Asif QUA; Hussain A; Nabi A; Tayyab M; Rafique HM J Mol Model; 2021 Jan; 27(2):31. PubMed ID: 33415475 [TBL] [Abstract][Full Text] [Related]
15. Fe-Catalyzed CO Hu P; Wang S; Zhuo Y ACS Appl Mater Interfaces; 2022 Jan; 14(1):1056-1069. PubMed ID: 34974700 [TBL] [Abstract][Full Text] [Related]
16. Optical Signatures of Quantum Emitters in Suspended Hexagonal Boron Nitride. Exarhos AL; Hopper DA; Grote RR; Alkauskas A; Bassett LC ACS Nano; 2017 Mar; 11(3):3328-3336. PubMed ID: 28267917 [TBL] [Abstract][Full Text] [Related]
17. Theoretical Investigation of the BCN Monolayer and Their Derivatives for Metal-free CO Wang J; Luo X ACS Omega; 2024 Jan; 9(3):3772-3780. PubMed ID: 38284013 [TBL] [Abstract][Full Text] [Related]
18. Converting graphene oxide monolayers into boron carbonitride nanosheets by substitutional doping. Lin TW; Su CY; Zhang XQ; Zhang W; Lee YH; Chu CW; Lin HY; Chang MT; Chen FR; Li LJ Small; 2012 May; 8(9):1384-91. PubMed ID: 22378619 [TBL] [Abstract][Full Text] [Related]
19. Engineering Nanostructured Interfaces of Hexagonal Boron Nitride-Based Materials for Enhanced Catalysis. Chen H; Jiang DE; Yang Z; Dai S Acc Chem Res; 2023 Jan; 56(1):52-65. PubMed ID: 36378327 [TBL] [Abstract][Full Text] [Related]
20. Electronic, optical, and adsorption properties of Li-doped hexagonal boron nitride: a GW approach. Talukdar D; Bora SS; Ahmed GA Phys Chem Chem Phys; 2024 Jan; 26(5):4021-4028. PubMed ID: 38224145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]