These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 39140141)
1. Principle and application of self-transcribing active regulatory region sequencing in enhancer discovery research. Wang JL; Li Q; Zhan TZ Yi Chuan; 2024 Aug; 46(8):589-602. PubMed ID: 39140141 [TBL] [Abstract][Full Text] [Related]
2. STARR-seq - principles and applications. Muerdter F; Boryń ŁM; Arnold CD Genomics; 2015 Sep; 106(3):145-150. PubMed ID: 26072434 [TBL] [Abstract][Full Text] [Related]
3. Comprehensive Genomic Discovery of Non-Coding Transcriptional Enhancers in the African Malaria Vector Holm I; Nardini L; Pain A; Bischoff E; Anderson CE; Zongo S; Guelbeogo WM; Sagnon N; Gohl DM; Nowling RJ; Vernick KD; Riehle MM Front Genet; 2021; 12():785934. PubMed ID: 35082832 [TBL] [Abstract][Full Text] [Related]
4. Functional assessment of human enhancer activities using whole-genome STARR-sequencing. Liu Y; Yu S; Dhiman VK; Brunetti T; Eckart H; White KP Genome Biol; 2017 Nov; 18(1):219. PubMed ID: 29151363 [TBL] [Abstract][Full Text] [Related]
5. STARR-seq and UMI-STARR-seq: Assessing Enhancer Activities for Genome-Wide-, High-, and Low-Complexity Candidate Libraries. Neumayr C; Pagani M; Stark A; Arnold CD Curr Protoc Mol Biol; 2019 Sep; 128(1):e105. PubMed ID: 31503413 [TBL] [Abstract][Full Text] [Related]
6. Global Quantitative Mapping of Enhancers in Rice by STARR-seq. Sun J; He N; Niu L; Huang Y; Shen W; Zhang Y; Li L; Hou C Genomics Proteomics Bioinformatics; 2019 Apr; 17(2):140-153. PubMed ID: 31201999 [TBL] [Abstract][Full Text] [Related]
7. STARR-seq identifies active, chromatin-masked, and dormant enhancers in pluripotent mouse embryonic stem cells. Peng T; Zhai Y; Atlasi Y; Ter Huurne M; Marks H; Stunnenberg HG; Megchelenbrink W Genome Biol; 2020 Sep; 21(1):243. PubMed ID: 32912294 [TBL] [Abstract][Full Text] [Related]
8. ATAC-STARR-seq reveals transcription factor-bound activators and silencers within chromatin-accessible regions of the human genome. Hansen TJ; Hodges E Genome Res; 2022 Aug; 32(8):1529-1541. PubMed ID: 35858748 [TBL] [Abstract][Full Text] [Related]
9. Identification of Highly Repetitive Enhancers with Long-range Regulation Potential in Barley via STARR-seq. Zhou W; Shi H; Wang Z; Huang Y; Ni L; Chen X; Liu Y; Li H; Li C; Liu Y Genomics Proteomics Bioinformatics; 2024 Jul; 22(2):. PubMed ID: 39167800 [TBL] [Abstract][Full Text] [Related]
10. High-throughput and quantitative assessment of enhancer activity in mammals by CapStarr-seq. Vanhille L; Griffon A; Maqbool MA; Zacarias-Cabeza J; Dao LT; Fernandez N; Ballester B; Andrau JC; Spicuglia S Nat Commun; 2015 Apr; 6():6905. PubMed ID: 25872643 [TBL] [Abstract][Full Text] [Related]
11. Prediction accuracy of regulatory elements from sequence varies by functional sequencing technique. Nowling RJ; Njoya K; Peters JG; Riehle MM Front Cell Infect Microbiol; 2023; 13():1182567. PubMed ID: 37600946 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide prediction of activating regulatory elements in rice by combining STARR-seq with FACS. Tian W; Huang X; Ouyang X Plant Biotechnol J; 2022 Dec; 20(12):2284-2297. PubMed ID: 36028476 [TBL] [Abstract][Full Text] [Related]
13. HDI-STARR-seq: Condition-specific enhancer discovery in mouse liver in vivo. Chang TY; Waxman DJ Res Sq; 2024 Jun; ():. PubMed ID: 38978599 [TBL] [Abstract][Full Text] [Related]
14. HDI-STARR-seq: Condition-specific enhancer discovery in mouse liver in vivo. Chang TY; Waxman DJ bioRxiv; 2024 Jun; ():. PubMed ID: 38915578 [TBL] [Abstract][Full Text] [Related]
15. Integrative epigenomic and high-throughput functional enhancer profiling reveals determinants of enhancer heterogeneity in gastric cancer. Sheng T; Ho SWT; Ooi WF; Xu C; Xing M; Padmanabhan N; Huang KK; Ma L; Ray M; Guo YA; Sim NL; Anene-Nzelu CG; Chang MM; Razavi-Mohseni M; Beer MA; Foo RSY; Sundar R; Chan YH; Tan ALK; Ong X; Skanderup AJ; White KP; Jha S; Tan P Genome Med; 2021 Oct; 13(1):158. PubMed ID: 34635154 [TBL] [Abstract][Full Text] [Related]
16. STARRPeaker: uniform processing and accurate identification of STARR-seq active regions. Lee D; Shi M; Moran J; Wall M; Zhang J; Liu J; Fitzgerald D; Kyono Y; Ma L; White KP; Gerstein M Genome Biol; 2020 Dec; 21(1):298. PubMed ID: 33292397 [TBL] [Abstract][Full Text] [Related]
17. Cis-regulatory atlas of primary human CD4+ T cells. Stefan K; Barski A BMC Genomics; 2023 May; 24(1):253. PubMed ID: 37170195 [TBL] [Abstract][Full Text] [Related]
18. Correcting signal biases and detecting regulatory elements in STARR-seq data. Kim YS; Johnson GD; Seo J; Barrera A; Cowart TN; Majoros WH; Ochoa A; Allen AS; Reddy TE Genome Res; 2021 May; 31(5):877-889. PubMed ID: 33722938 [TBL] [Abstract][Full Text] [Related]
19. Functional genomic assays to annotate enhancer-promoter interactions genome wide. Leung AK; Yao L; Yu H Hum Mol Genet; 2022 Oct; 31(R1):R97-R104. PubMed ID: 36018818 [TBL] [Abstract][Full Text] [Related]
20. An unbiased AAV-STARR-seq screen revealing the enhancer activity map of genomic regions in the mouse brain in vivo. Chan YC; Kienle E; Oti M; Di Liddo A; Mendez-Lago M; Aschauer DF; Peter M; Pagani M; Arnold C; Vonderheit A; Schön C; Kreuz S; Stark A; Rumpel S Sci Rep; 2023 Apr; 13(1):6745. PubMed ID: 37185990 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]