These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. DeePMD-kit v2: A software package for deep potential models. Zeng J; Zhang D; Lu D; Mo P; Li Z; Chen Y; Rynik M; Huang L; Li Z; Shi S; Wang Y; Ye H; Tuo P; Yang J; Ding Y; Li Y; Tisi D; Zeng Q; Bao H; Xia Y; Huang J; Muraoka K; Wang Y; Chang J; Yuan F; Bore SL; Cai C; Lin Y; Wang B; Xu J; Zhu JX; Luo C; Zhang Y; Goodall REA; Liang W; Singh AK; Yao S; Zhang J; Wentzcovitch R; Han J; Liu J; Jia W; York DM; E W; Car R; Zhang L; Wang H J Chem Phys; 2023 Aug; 159(5):. PubMed ID: 37526163 [TBL] [Abstract][Full Text] [Related]
5. PyBERTHART: A Relativistic Real-Time Four-Component TDDFT Implementation Using Prototyping Techniques Based on Python. De Santis M; Storchi L; Belpassi L; Quiney HM; Tarantelli F J Chem Theory Comput; 2020 Apr; 16(4):2410-2429. PubMed ID: 32101419 [TBL] [Abstract][Full Text] [Related]
6. Cross-platform hyperparameter optimization for machine learning interatomic potentials. Thomas du Toit DF; Deringer VL J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37431916 [TBL] [Abstract][Full Text] [Related]
7. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
9. BindsNET: A Machine Learning-Oriented Spiking Neural Networks Library in Python. Hazan H; Saunders DJ; Khan H; Patel D; Sanghavi DT; Siegelmann HT; Kozma R Front Neuroinform; 2018; 12():89. PubMed ID: 30631269 [TBL] [Abstract][Full Text] [Related]
10. Amber free energy tools: Interoperable software for free energy simulations using generalized quantum mechanical/molecular mechanical and machine learning potentials. Tao Y; Giese TJ; Ekesan Ş; Zeng J; Aradi B; Hourahine B; Aktulga HM; Götz AW; Merz KM; York DM J Chem Phys; 2024 Jun; 160(22):. PubMed ID: 38856060 [TBL] [Abstract][Full Text] [Related]
11. Enabling large-scale quantum path integral molecular dynamics simulations through the integration of Dcdftbmd and i-PI codes. Nishimura Y; Nakai H J Chem Phys; 2023 Apr; 158(16):. PubMed ID: 37102447 [TBL] [Abstract][Full Text] [Related]
12. GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations. Fan Z; Wang Y; Ying P; Song K; Wang J; Wang Y; Zeng Z; Xu K; Lindgren E; Rahm JM; Gabourie AJ; Liu J; Dong H; Wu J; Chen Y; Zhong Z; Sun J; Erhart P; Su Y; Ala-Nissila T J Chem Phys; 2022 Sep; 157(11):114801. PubMed ID: 36137808 [TBL] [Abstract][Full Text] [Related]
13. Efficient Molecular Dynamics Simulations of Deep Eutectic Solvents with First-Principles Accuracy Using Machine Learning Interatomic Potentials. Shayestehpour O; Zahn S J Chem Theory Comput; 2023 Dec; 19(23):8732-8742. PubMed ID: 37972596 [TBL] [Abstract][Full Text] [Related]
14. Machine Learning Interatomic Potentials as Emerging Tools for Materials Science. Deringer VL; Caro MA; Csányi G Adv Mater; 2019 Nov; 31(46):e1902765. PubMed ID: 31486179 [TBL] [Abstract][Full Text] [Related]
15. A data-guided approach for the evaluation of zeolites for hydrogen storage with the aid of molecular simulations. Manda T; Barasa GO; Louis H; Irfan A; Agumba JO; Lugasi SO; Pembere AMS J Mol Model; 2024 Jan; 30(2):43. PubMed ID: 38236500 [TBL] [Abstract][Full Text] [Related]
16. A novel approach to describe chemical environments in high-dimensional neural network potentials. Kocer E; Mason JK; Erturk H J Chem Phys; 2019 Apr; 150(15):154102. PubMed ID: 31005106 [TBL] [Abstract][Full Text] [Related]
17. First Principles Neural Network Potentials for Reactive Simulations of Large Molecular and Condensed Systems. Behler J Angew Chem Int Ed Engl; 2017 Oct; 56(42):12828-12840. PubMed ID: 28520235 [TBL] [Abstract][Full Text] [Related]
18. Physically informed artificial neural networks for atomistic modeling of materials. Pun GPP; Batra R; Ramprasad R; Mishin Y Nat Commun; 2019 May; 10(1):2339. PubMed ID: 31138813 [TBL] [Abstract][Full Text] [Related]
19. Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments. Zaverkin V; Holzmüller D; Steinwart I; Kästner J J Chem Theory Comput; 2021 Oct; 17(10):6658-6670. PubMed ID: 34585927 [TBL] [Abstract][Full Text] [Related]
20. Scalable Parallel Algorithm for Graph Neural Network Interatomic Potentials in Molecular Dynamics Simulations. Park Y; Kim J; Hwang S; Han S J Chem Theory Comput; 2024 Jun; 20(11):4857-4868. PubMed ID: 38813770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]