These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 39141044)
1. Identification of illicit discharges in sewer networks by an SWMM-Bayesian coupled approach. Yang L; Huang B; Liu J Water Sci Technol; 2024 Aug; 90(3):951-967. PubMed ID: 39141044 [TBL] [Abstract][Full Text] [Related]
2. A Bayesian-SWMM coupled stochastic model developed to reconstruct the complete profile of an unknown discharging incidence in sewer networks. Shao Z; Xu L; Chai H; Yost SA; Zheng Z; Wu Z; He Q J Environ Manage; 2021 Nov; 297():113211. PubMed ID: 34284327 [TBL] [Abstract][Full Text] [Related]
3. Identification of point source emission in river pollution incidents based on Bayesian inference and genetic algorithm: Inverse modeling, sensitivity, and uncertainty analysis. Zhu Y; Chen Z; Asif Z Environ Pollut; 2021 Sep; 285():117497. PubMed ID: 34380214 [TBL] [Abstract][Full Text] [Related]
4. [Identifying dry-weather flow and pollution load sources of separate storm sewer systems with different degrees of illicit discharge]. Meng YY; Feng C; Li T; Wang L Huan Jing Ke Xue; 2009 Dec; 30(12):3527-33. PubMed ID: 20187382 [TBL] [Abstract][Full Text] [Related]
5. Spatial variations of pollutants from sewer interception system overflow. Chen S; Qin HP; Zheng Y; Fu G J Environ Manage; 2019 Mar; 233():748-756. PubMed ID: 30316581 [TBL] [Abstract][Full Text] [Related]
6. Illicit and pharmaceutical drug consumption estimated via wastewater analysis. Part B: placing back-calculations in a formal statistical framework. Jones HE; Hickman M; Kasprzyk-Hordern B; Welton NJ; Baker DR; Ades AE Sci Total Environ; 2014 Jul; 487(100):642-50. PubMed ID: 24636801 [TBL] [Abstract][Full Text] [Related]
7. The leakage of sewer systems and the impact on the 'black and odorous water bodies' and WWTPs in China. Cao YS; Tang JG; Henze M; Yang XP; Gan YP; Li J; Kroiss H; van Loosdrecht MCM; Zhang Y; Daigger GT Water Sci Technol; 2019 Jan; 79(2):334-341. PubMed ID: 30865604 [TBL] [Abstract][Full Text] [Related]
8. Locating illicit discharges in storm sewers in urban areas using multi-parameter source tracking: Field validation of a toolbox composite index to prioritize high risk areas. Hachad M; Lanoue M; Vo Duy S; Villlemur R; Sauvé S; Prévost M; Dorner S Sci Total Environ; 2022 Mar; 811():152060. PubMed ID: 34861306 [TBL] [Abstract][Full Text] [Related]
9. Characterization of runoff from various urban catchments at different spatial scales in Beijing, China. Zhang W; Che W; Liu DK; Gan YP; Lv FF Water Sci Technol; 2012; 66(1):21-7. PubMed ID: 22678196 [TBL] [Abstract][Full Text] [Related]
10. Modeling in-sewer transformations at catchment scale - implications on drug consumption estimates in wastewater-based epidemiology. McCall AK; Palmitessa R; Blumensaat F; Morgenroth E; Ort C Water Res; 2017 Oct; 122():655-668. PubMed ID: 28651217 [TBL] [Abstract][Full Text] [Related]
11. Enhancing Models and Measurements of Traffic-Related Air Pollutants for Health Studies Using Dispersion Modeling and Bayesian Data Fusion. Batterman S; Berrocal VJ; Milando C; Gilani O; Arunachalam S; Zhang KM Res Rep Health Eff Inst; 2020 Mar; 2020(202):1-63. PubMed ID: 32239871 [TBL] [Abstract][Full Text] [Related]
12. MODCEL-MHUS: a comprehensive multilayer hydrodynamic unified simulation for stormwater, sanitary sewer systems, and urban surface. de Oliveira AKB; Magalhães PC; Rezende OM; Sousa MM; Marques RHM; Gomes Miguez M Water Sci Technol; 2024 Jul; 90(1):190-212. PubMed ID: 39007314 [TBL] [Abstract][Full Text] [Related]
13. Part 2. Development of Enhanced Statistical Methods for Assessing Health Effects Associated with an Unknown Number of Major Sources of Multiple Air Pollutants. Park ES; Symanski E; Han D; Spiegelman C Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):51-113. PubMed ID: 26333239 [TBL] [Abstract][Full Text] [Related]
14. Bayesian decision analysis as a tool for defining monitoring needs in the field of effects of CSOs on receiving waters. Korving H; Clemens F Water Sci Technol; 2002; 45(3):175-84. PubMed ID: 11902469 [TBL] [Abstract][Full Text] [Related]
15. A methodology for linking 2D overland flow models with the sewer network model SWMM 5.1 based on dynamic link libraries. Leandro J; Martins R Water Sci Technol; 2016; 73(12):3017-26. PubMed ID: 27332848 [TBL] [Abstract][Full Text] [Related]
16. Assessment of temporal and spatial differences of source apportionment of nitrate in an urban river in China, using δ(15)N and δ(18)O values and an isotope mixing model. Zhang Q; Wang X; Sun F; Sun J; Liu J; Ouyang Z Environ Sci Pollut Res Int; 2015 Dec; 22(24):20226-33. PubMed ID: 26527336 [TBL] [Abstract][Full Text] [Related]
17. Continuous monitoring in sewer networks an approach for quantification of pollution loads from CSOs into surface water bodies. Gruber G; Winkler S; Pressl A Water Sci Technol; 2005; 52(12):215-23. PubMed ID: 16477989 [TBL] [Abstract][Full Text] [Related]
18. Identification of potential sewer mining locations: a Monte-Carlo based approach. Tsoukalas IK; Makropoulos CK; Michas SN Water Sci Technol; 2017 Dec; 76(11-12):3351-3357. PubMed ID: 29236014 [TBL] [Abstract][Full Text] [Related]
19. Contributions of wastewater, runoff and sewer deposit erosion to wet weather pollutant loads in combined sewer systems. Gasperi J; Gromaire MC; Kafi M; Moilleron R; Chebbo G Water Res; 2010 Dec; 44(20):5875-86. PubMed ID: 20696453 [TBL] [Abstract][Full Text] [Related]
20. Quantification of sewer leakage: a review. Rutsch M; Rieckermann J; Krebs P Water Sci Technol; 2006; 54(6-7):135-44. PubMed ID: 17120643 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]