These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 39141236)
1. Cleavage Under Targets and Release Using Nuclease (CUT&RUN) of Epigenetic Regulators. McCray AD; Wang X Methods Mol Biol; 2024; 2846():169-179. PubMed ID: 39141236 [TBL] [Abstract][Full Text] [Related]
2. Cleavage Under Targets and Release Using Nuclease (CUT&RUN) in Macrophages. Babl A; Greulich F Methods Mol Biol; 2024; 2846():151-167. PubMed ID: 39141235 [TBL] [Abstract][Full Text] [Related]
3. Summary of ChIP-Seq Methods and Description of an Optimized ChIP-Seq Protocol. Fadri MTM; Lee JB; Keung AJ Methods Mol Biol; 2024; 2842():419-447. PubMed ID: 39012609 [TBL] [Abstract][Full Text] [Related]
5. Chromatin integration labeling for mapping DNA-binding proteins and modifications with low input. Handa T; Harada A; Maehara K; Sato S; Nakao M; Goto N; Kurumizaka H; Ohkawa Y; Kimura H Nat Protoc; 2020 Oct; 15(10):3334-3360. PubMed ID: 32807906 [TBL] [Abstract][Full Text] [Related]
6. Genome-Wide Profiling of Protein-DNA Interactions with Chromatin Endogenous Cleavage and High-Throughput Sequencing (ChEC-Seq ). Saleh MM; Tourigny JP; Zentner GE Methods Mol Biol; 2021; 2351():289-303. PubMed ID: 34382196 [TBL] [Abstract][Full Text] [Related]
7. CUT&RUN for Chromatin Profiling in Caenorhabditis elegans. Emerson FJ; Lee SS Curr Protoc; 2022 Jun; 2(6):e445. PubMed ID: 35714350 [TBL] [Abstract][Full Text] [Related]
8. Chromatin Profiling of Human Naïve Pluripotent Stem Cells. Bendall A; Semprich CI Methods Mol Biol; 2022; 2416():181-200. PubMed ID: 34870837 [TBL] [Abstract][Full Text] [Related]
9. Single-Cell Factor Localization on Chromatin using Ultra-Low Input Cleavage Under Targets and Release using Nuclease. Lardo SM; Hainer SJ J Vis Exp; 2022 Feb; (180):. PubMed ID: 35188122 [TBL] [Abstract][Full Text] [Related]
10. Native ChIP: Studying the Genome-Wide Distribution of Histone Modifications in Cells and Tissue. Nitsch S; Schneider R Methods Mol Biol; 2024; 2846():1-16. PubMed ID: 39141226 [TBL] [Abstract][Full Text] [Related]
11. CUT&RUN Profiling of the Budding Yeast Epigenome. Brahma S; Henikoff S Methods Mol Biol; 2022; 2477():129-147. PubMed ID: 35524116 [TBL] [Abstract][Full Text] [Related]
12. ChIP-seq Analysis of Condensin Complex in Cultured Mammalian Cells. Sakata T; Shirahige K; Sutani T Methods Mol Biol; 2017; 1515():257-271. PubMed ID: 27797085 [TBL] [Abstract][Full Text] [Related]
13. Integrative Analysis of CUT&Tag and RNA-Seq Data Through Bioinformatics: A Unified Workflow for Enhanced Insights. Liorni N; Napoli A; Adinolfi M; Vinciguerra M; Mazza T Methods Mol Biol; 2024; 2846():191-213. PubMed ID: 39141238 [TBL] [Abstract][Full Text] [Related]
16. Chromatin Immunoprecipitation for Identification of Protein-DNA Interactions in Human Cells. Larsen BD; Madsen MR; Nielsen R; Mandrup S Methods Mol Biol; 2018; 1794():335-352. PubMed ID: 29855970 [TBL] [Abstract][Full Text] [Related]
17. Differential Analysis of Protein-DNA Binding Using ChIP-Seq Data. Boeckel C; Pastor X; Heinig M; Walzthoeni T Methods Mol Biol; 2024; 2846():63-89. PubMed ID: 39141230 [TBL] [Abstract][Full Text] [Related]
18. A High-Throughput Chromatin Immunoprecipitation Sequencing Approach to Study the Role of MYC on the Epigenetic Landscape. Fagnocchi L; Zippo A Methods Mol Biol; 2021; 2318():187-208. PubMed ID: 34019291 [TBL] [Abstract][Full Text] [Related]
19. DNA-Binding Factor Target Identification by Chromatin Immunoprecipitation (ChIP) in Plants. Posé D; Yant L Methods Mol Biol; 2016; 1363():25-35. PubMed ID: 26577778 [TBL] [Abstract][Full Text] [Related]
20. Chromatin Immunoprecipitation in Human and Yeast Cells. Lee JB; Keung AJ Methods Mol Biol; 2018; 1767():257-269. PubMed ID: 29524140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]